

Semantic Parsing for Cancer Panomics

Hoifung Poon

Overview

Overview

Overview

Collaborators

David Heckerman

Kristina Toutanova

Chris Quirk

Tony Gitter

Ankur Parikh

Lucy Vanderwende

Precision Medicine

Vemurafenib on BRAF-V600 Melanoma

Before Treatment

15 Weeks

Vemurafenib on BRAF-V600 Melanoma

Before Treatment

15 Weeks

23 Weeks

Cost per Genome

Traditional Biology

Genomics

High-Throughput Experiments

Genome-Wide Association Studies (GWAS)

"Genetic diagnosis of diseases would be accomplished **in 10 years** and that treatments would start to roll out perhaps five years after that."

"A Decade Later, Genetic Maps Yield Few New Cures" New York Times, June 2010.

Key Challenges

- Human genome: 3 billion base pairs
- Potential variations: > 10 million mutations
- Combination: > 10¹⁰⁰⁰⁰⁰⁰ (1 million zeros)
- Machine learning problem
 - Atomic features: > 10 million
 - Feature combination: Too many to enumerate

Genomics

High-Throughput Experiments

Discovery

How to Scale Discovery?

Cancer

- Hundreds of mutations
- Most are "passenger", not driver
- Can we identify likely drivers?

Panomics

... ATTCGGATATTTAAGGC ...

Genome

Transcriptome

Epigenome

.....

Pathway Knowledge

Genes work synergistically in pathways

Why Hard to Identify Drivers?

- Complex diseases ← Synergistic perturbation of multiple pathways
- Cancer: 6 8 "hallmarks"
 - Promote growth
 - Avoid suicide
 - Evade immune attack
 - Induce blood vessels
 - Invade neighboring tissues

Hanahan & Weinberg [Cell 2011]

Why Cancer Comes Back?

- Subtypes with alternative pathway profile
- Compensatory pathways can be activated

Why Cancer Comes Back?

- Subtypes with alternative pathway profile
- Compensatory pathways can be activated

A Grammar of Cancer?

Cancer \rightarrow Anti-Apoptosis & ProGrowth & ... Anti-Apoptosis \rightarrow Deactivate TP53 Anti-Apoptosis \rightarrow Activate BCL-2

Infer Cancer Driver Mutations

Pathway Knowledge

Approach: Graph HMM

Extract Pathways from Pubmed

PubMed

- 22 millions abstracts
- Two new abstracts every minute
- Adds 2000-4000 every day

Extract Pathways from Pubmed

Extract Complex Knowledge

Involvement of p70(S6)-kinase activation in IL-10 up-regulation in human monocytes by gp41 envelope protein of human immunodeficiency virus type 1 ...

Involvement

up-regulation

activation

IL-10 gp41

human monocyte

Extract Complex Knowledge

Involvement of p70(S6)-kinase activation in IL-10 up-regulation in human monocytes by gp41 envelope protein of human immunodeficiency virus type 1 ...

Involvement REGULATION

up-regulation REGULATION

activation REGULATION

IL-10 protein gp41 protein human monocyte CELL

p70(S6)-kinase protein

Extract Complex Knowledge

Involvement of p70(S6)-kinase activation in IL-10 up-regulation in human monocytes by gp41 envelope protein of human immunodeficiency virus type 1 ...

Bottleneck: Annotated Examples

- GENIA (BioNLP Shared Task 2009-2013)
 - 1999 abstracts
 - MeSH: human, blood cell, transcription factor
- Can we breach the annotation bottleneck?

Free Lunch #1: Distributional Similarity

- Similar context \rightarrow Probably similar meaning
- Annotation as latent variables
 Textual expression → Recursive clusters
- Unsupervised semantic parsing

Poon & Domingos, "Unsupervised Semantic Parsing". EMNLP-2009 (Best Paper Award).

Problem Formulation

Dependency tree d Semantic parse z

Probability $P_{\theta}(d, z)$

Parsing $z^* = \arg \max_{z} \log P_{\theta}(d, z)$ Learning $\theta^* = \arg \max_{\theta} \sum_{d} \log \sum_{z} P_{\theta}(d, z)$

Prior: Favor fewer parameters

Free Lunch #2: Existing KBs

- Many KBs available
 - Gene/Protein: GeneBank, UniProt, ...
 - Pathways: NCI, Reactome, KEGG, BioCarta, ...
- Annotation as latent variables
 Textual expression → Table, column, join, ...
- Grounded unsupervised semantic parsing

Poon, "Grounded Unsupervised Semantic Parsing". ACL-13.

Natural-Language Interface to Database

Get flight from Toronto to San Diego stopping at DTW

SELECT flight.flight_id FROM flight, city, city c2, flight_stop, airport_service, airport_service as2 WHERE flight.from_airport = airport_service.airport_code AND flight.to_airport = as2.airport_code AND airport_service.city_code = city.city_code AND as2.city_code = city2.city_code AND city.city_name = 'toronto' AND city2.city_name = 'san diego' AND flight_stop.flight_id = flight.flight_id AND flight_stop.stop_airport = 'dtw'

Clusters = KB Elements

- Entity: Table, Column, Cell
- Relation: Relational join
- Priors:
 - Favor lexical similarity
 - Favor short relational joins

Leverage target database

JOB

Bootstrap learning with lexical prior

Prior: Favor Unix \rightarrow System

Leverage target database

Leverage schema to guide learning

Prior: Favor shorter join

Free Lunch #3: Dependency Parses

- Start from syntactic parse
- Rich resources and available parsers
- Intractable structure learning \rightarrow Tree HMM
- Exact inference is linear-time
- Need to handle syntax-semantics mismatch

Introduce Complex States

- Raising
- Sinking
- Implicit

Implicit

Give me the fare (of the flight) from Seattle to Boston

Experiment: Dataset

ATIS

- Questions and ATIS database
- Dev. / Test: Follow ZC07 [Zettlemoyer & Collins 2007]
- Gold SQLs: Use at evaluation only
- Gold logical forms in ZC07: Not used
- Evaluate on question-answering accuracy

Experiment: Systems

- LEXICAL: Lexical-trigger prior only
- Supervised learning
 - ZC07: Zettlemoyer & Collins [2007]
 - FUBL: Kwiatkowski et al. [2011]
- **GUSP–SIMPLE**: Simple states only
- **GUSP++**: All states

Results

System	Accuracy
ZC07	84.6
FUBL	82.8
GUSP++	83.5

Ablation

System Variant	Accuracy
LEXICAL	33.9
GUSP-SIMPLE	66.5
GUSP++	83.5
 Raising 	75.7
 Sinking 	77.5
 Implicit 	76.2

Pathway Extraction

- More to leverage from KB:
 Semantic relations in KB likely occur in
 - semantic parse of some sentence
- Priors:
 - Favor a parse w. relations in KB
 - Penalize a parse w. relations not in KB

Distant-Supervision

- Existing work: Binary relation, classification
 - Mintz et al. [2009]
 - Riedel et al. [2010]
 - Hoffmann et al. [2011]
 - Krishnamurphy & Mitchell [2012]
 - Etc.
- Our approach: Generalize distant supervision
 to semantic parsing Parikh, Poon, Toutanova. In progress.

Literome

The Literome Project		Welcome charlie change to user id	Research				
filter by	ABC*			Gene	s: ABCA1, ABCA2, ABCA3, ABCA4, ABCA5	(1 - 50 of 5498)	
genes	ZABCA1		ABCA1	Abacavir	PMID: 15327972	of abacavir (ABC; 1 -(1S,4R)	^
snps	ABCA10	î			Improved antiviral activity of the aryloxymethoxyalaninyl phosphoramidate	-4-[2-amino-6-(cyclopropylamino)-9H-purin- 9-yl]-2-cyclopentene-1-methanol)	
diseases	ABCA12				(APA) prodrug of abacavir (ABC) is due to	(details)	
drugs	□ABCA13 □ABCA17P				the formation of markedly increased carbovir 5'-triphosphate metabolite levels.		
	ABCA2			Abetalinonroteinemia	PMID: 16569910	of ABCA1 with	-1

Poon *et al.*, "Literome: PubMed-Scale Genomic Knowledge Base in the Cloud", *Bioinformatics* 2014.

http://literome.azurewebsites.net

PubMed-Scale Extraction

- Preliminary pass:
 - 2 million instances
 - 13,000 genes, 870,000 unique interactions
- Applications:
 - UCSC Genome Browser, MSR Interactions Track
 - Cancer expression profile modeling
 - Validate *de novo* pathway prediction
 - Etc.

- 42-million program for 12 teams
 - Reading, Assembly, Explanation
 - Domain: Cancer signaling pathways
- We are funded
 - PI: Andrey Rzhetsky
 - Co-PI w. James Evans, Ross King

We Have Digitized Life

Next: Digitize Medicine

PERSPECTIVE

CANCER

RNAi Therapies: Drugging the Undruggable

Sherry Y. Wu,¹ Gabriel Lopez-Berestein,^{2,3} George A. Calin,^{2,3} Anil K. Sood^{1,3,4*}

RNA interference (RNAi) therapy is a rapidly emerging platform for personalized cancer treatment. Recent advances in small interfering RNA delivery and target selection provide unprecedented opportunities for clinical translation. Here, we discuss these advances and present strategies for making RNAi-based therapy a viable part of cancer management.

Knock down genes A, B, C \rightarrow Cure

Summary

- Precision medicine is the future
- Infer cancer driver mutations

Graphical model: Pathways + Panomics data

Extract pathways from Pubmed

Semantic parsing grounded in KBs

• Literome: KB for genomic medicine

Summary

