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Genomics
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High-Throughput Experiments
Discovery
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… ATTCGGATATTTAAGGC …

… ATTCGGGTATTTAAGCC … Healthy

Disease
(e.g., Alzheimer, Cancer)

Genome-Wide Association Studies (GWAS) 

2000

2010

“Genetic diagnosis of diseases would be

accomplished in 10 years and that

treatments would start to roll out perhaps

five years after that.”

“A Decade Later, Genetic Maps Yield Few New Cures” 

New York Times, June 2010.
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Key Challenges

 Human genome: 3 billion base pairs

 Potential variations: > 10 million mutations

 Combination: > 101000000 (1 million zeros)

 Machine learning problem

 Atomic features: > 10 million

 Feature combination: Too many to enumerate
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Genomics
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Cancer

 Hundreds of mutations

 Most are “passenger”, not driver

 Can we identify likely drivers?
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Panomics
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Pathway Knowledge

Genes work synergistically in pathways
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Why Hard to Identify Drivers?

 Complex diseases  Synergistic perturbation 

of multiple pathways

 Cancer: 6  8 “hallmarks”

 Promote growth

 Avoid suicide

 Evade immune attack

 Induce blood vessels

 Invade neighboring tissues

 …
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Hanahan & Weinberg [Cell 2011]



Why Cancer Comes Back?

 Subtypes with alternative pathway profile

 Compensatory pathways can be activated
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Why Cancer Comes Back?

 Subtypes with alternative pathway profile

 Compensatory pathways can be activated
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A Grammar of Cancer?

Cancer  Anti-Apoptosis & ProGrowth & …

Anti-Apoptosis  Deactivate TP53

Anti-Apoptosis  Activate BCL-2

…
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Infer Cancer Driver Mutations
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Approach: Graph HMM
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Extract Pathways from Pubmed
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PubMed

 22 millions abstracts

 Two new abstracts every minute

 Adds 2000-4000 every day
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…

VDR+ binds to 

SMAD3 to form

…

…
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PMID: 123

PMID: 456

…
…
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Bottleneck: Annotated Examples

 GENIA (BioNLP Shared Task 2009-2013)

 1999 abstracts

 MeSH: human, blood cell, transcription factor

 Can we breach the annotation bottleneck?
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Free Lunch #1: 

Distributional Similarity

 Similar context  Probably similar meaning

 Annotation as latent variables

Textual expression  Recursive clusters

 Unsupervised semantic parsing
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Poon & Domingos, “Unsupervised Semantic Parsing”. 

EMNLP-2009 (Best Paper Award).



Problem Formulation

Dependency tree           Semantic parse

Probability

Parsing

Learning 
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Prior: Favor fewer parameters



Free Lunch #2:

Existing KBs

 Many KBs available

 Gene/Protein: GeneBank, UniProt, …

 Pathways: NCI, Reactome, KEGG, BioCarta, …

 Annotation as latent variables

Textual expression  Table, column, join, …

 Grounded unsupervised semantic parsing
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Poon, “Grounded Unsupervised Semantic Parsing”. ACL-13.



Natural-Language Interface

to Database

Get flight from Toronto to San Diego stopping at DTW

SELECT flight.flight_id

FROM flight, city, city c2, flight_stop, airport_service, airport_service as2

WHERE flight.from_airport = airport_service.airport_code AND flight.to_airport = 

as2.airport_code AND airport_service.city_code = city.city_code AND as2.city_code = 

city2.city_code AND city.city_name = ‘toronto’ AND city2.city_name = ‘san diego’ AND 

flight_stop.flight_id = flight.flight_id AND flight_stop.stop_airport = ‘dtw’

Answers
40



Clusters  KB Elements

 Entity: Table, Column, Cell

 Relation: Relational join

 Priors:

 Favor lexical similarity

 Favor short relational joins
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GUSP: Key Ideas

 Leverage target database
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Job ID Company System

001 IBM Unix

002 Roche IBM

003 Microsoft Windows

…
…

Prior: Favor Unix → System

Bootstrap learning 

with lexical prior

JOB



GUSP: Key Ideas

 Leverage target database
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GUSP: Key Ideas

 Leverage target database
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GUSP: Key Ideas

 Leverage target database
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GUSP: Key Ideas

 Leverage target database
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Prior: Favor shorter join

Leverage schema 

to guide learningFlight

Days Fare Airline

Airport

flight BWI



Free Lunch #3: 

Dependency Parses

 Start from syntactic parse

 Rich resources and available parsers

 Intractable structure learning  Tree HMM

 Exact inference is linear-time

 Need to handle syntax-semantics mismatch
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Introduce Complex States

 Raising

 Sinking

 Implicit
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Raising
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Sinking

get

toronto

flight from to

diego

at

san stopping

dtw
55

E:flight:R

V:city.name + E:flight



Implicit
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Give me the fare (of the flight) from Seattle to Boston

fare

E:fare

fare

E:fare + E:flight



Experiment: Dataset

 ATIS

 Questions and ATIS database

 Dev. / Test: Follow ZC07 [Zettlemoyer & Collins 2007]

 Gold SQLs: Use at evaluation only

 Gold logical forms in ZC07: Not used

 Evaluate on question-answering accuracy
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Experiment: Systems

 LEXICAL: Lexical-trigger prior only

 Supervised learning

 ZC07: Zettlemoyer & Collins [2007]

 FUBL: Kwiatkowski et al. [2011]

 GUSPSIMPLE: Simple states only

 GUSP++: All states
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Results
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System Accuracy

ZC07 84.6

FUBL 82.8

GUSP++ 83.5



Ablation
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System Variant Accuracy

LEXICAL 33.9

GUSPSIMPLE 66.5

GUSP++ 83.5

 Raising 75.7

 Sinking 77.5

 Implicit 76.2



Pathway Extraction

 More to leverage from KB: 

Semantic relations in KB likely occur in 

semantic parse of some sentence

 Priors:

 Favor a parse w. relations in KB

 Penalize a parse w. relations not in KB
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Distant-Supervision

 Existing work: Binary relation, classification 
 Mintz et al. [2009] 

 Riedel et al. [2010] 

 Hoffmann et al. [2011]

 Krishnamurphy & Mitchell [2012]

 Etc.

 Our approach: Generalize distant supervision 

to semantic parsing
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Parikh, Poon, Toutanova. In progress.



http://literome.azurewebsites.net
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Literome

Poon et al., “Literome: PubMed-Scale Genomic Knowledge 

Base in the Cloud”, Bioinformatics 2014.



PubMed-Scale Extraction

 Preliminary pass: 

 2 million instances

 13,000 genes, 870,000 unique interactions

 Applications:

 UCSC Genome Browser, MSR Interactions Track

 Cancer expression profile modeling

 Validate de novo pathway prediction

 Etc.
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Big Mechanism

 42-million program for 12 teams

 Reading, Assembly, Explanation

 Domain: Cancer signaling pathways

 We are funded

 PI: Andrey Rzhetsky

 Co-PI w. James Evans, Ross King
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We Have Digitized Life
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Next: Digitize Medicine
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Knock down genes A, B, C → Cure



Summary

 Precision medicine is the future

 Infer cancer driver mutations

Graphical model: Pathways + Panomics data

 Extract pathways from Pubmed

Semantic parsing grounded in KBs

 Literome: KB for genomic medicine
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