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What is Semantic Parsing? 

•  Mapping a natural-language sentence to a 
detailed representation of its complete 
meaning in a fully formal language that: 
– Has a rich ontology of types, properties, and 

relations. 
– Supports automated reasoning or execution. 
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Geoquery: 
 A Database Query Application 

•  Query application for a U.S. geography database 
containing about 800 facts [Zelle & Mooney, 1996]  

What is the 
smallest state by 

area? 

Query 
answer(x1,smallest(x2,(state(x1),area(x1,x2)))) 

Semantic Parsing 

Rhode Island 

Answer 



Prehistory 1600’s 

•  Gottfried Leibniz (1685) developed 
a formal conceptual language, the 
characteristica universalis, for use 
by an automated reasoner, the 
calculus ratiocinator. 
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“The only way to rectify our reasonings is to make 
them as tangible as those of the Mathematicians, so 
that we can find our error at a glance, and when there 
are disputes among persons, we can simply say: Let 
us calculate, without further ado, to see who is right.” 



Interesting Book on Leibniz 
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Prehistory 1850’s  

•  George Boole (Laws of Thought, 
1854) reduced propositional 
logic to an algebra over binary-
valued variables. 
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•  His book is subtitled “on Which are 
Founded the Mathematical Theories of 
Logic and Probabilities” and tries to 
formalize both forms of human reasoning. 



Prehistory 1870’s  

•  Gottlob Frege (1879) developed 
Begriffsschrift (concept writing), 
the first formalized quantified 
predicate logic. 
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Prehistory 1910’s  

•  Bertrand Russell and Alfred North 
Whitehead (Principia Mathematica, 
1913) finalized the development of 
modern first-order predicate logic 
(FOPC). 
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Interesting Book on Russell 

9 



History from Philosophy and Linguistics 

•  Richard Montague (1970) developed a 
formal method for mapping natural-
language to FOPC using Church’s lambda 
calculus of functions and the fundamental 
principle of semantic compositionality for 
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recursively computing the meaning of each syntactic 
constituent from the meanings of its sub-constituents. 

 
•  Later called “Montague Grammar” 

or “Montague Semantics” 



Interesting Book on Montague 
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•  See Aifric Campbell’s (2009) novel The Semantics of 
Murder for a fictionalized account of his mysterious 
death in 1971 (homicide or homoerotic asphyxiation??). 



Early History in AI 

•  Bill Woods (1973) developed the 
first NL database interface 
(LUNAR) to answer scientists’ 
questions about moon rooks 
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using a manually developed Augmented 
Transition Network (ATN) grammar. 



Early History in AI 

•  Dave Waltz (1975) developed the 
next NL database interface 
(PLANES) to query a database of 
aircraft maintenance for the US 
Air Force. 

•  I learned about this early work as 
a student of Dave’s at UIUC in 
the early 1980’s. 
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(1943-2012) 



Early Commercial History 

•  Gary Hendrix founded 
Symantec (“semantic 
technologies”) in 1982 to 
commercialize NL database  
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interfaces based on manually developed 
semantic grammars, but they switched to other 
markets when this was not profitable.  

•  Hendrix got his BS and MS at UT Austin 
working with my former UT NLP 
colleague, Bob Simmons (1925-1994).  



1980’s: The “Fall” of Semantic Parsing 

•  Manual development of a new semantic 
grammar for each new database did not 
“scale well” and was not commercially 
viable. 

•  The failure to commercialize NL database 
interfaces led to decreased research interest 
in the problem. 
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Learning Semantic Parsers 

•  Manually programming robust semantic parsers 
is difficult due to the complexity of the task. 

•  Semantic parsers can be learned automatically 
from sentences paired with their formal 
meaning representations (MRs). 

NL→MR  
Training Exs 

 Semantic-Parser 
 Learner 

Natural  
Language 

Meaning 
 Rep 

Semantic 
Parser 



History of Learning Semantic Parsers  

•  I started working on 
learning semantic parsers 
in 1992 and by 2010 had 6 
PhD’s who finished their 
thesis on the topic. 
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•  There was also work in the 1990’s on 
learning semantic parsers for ATIS at 
BBN and elsewhere (Miller et al., 1994; 
Kuhn & DeMori, 1995).  



Different Learning Approaches 
My Former Students Explored 

•  Inductive Logic Programming 
(CHILL, WOLFIE,   
COCKTAIL) 

•  Probabilistic Synchronous 
Grammars (WASP) 

•  SVMs with String Kernels 
(KRISP) 

•  Integration with statistical 
syntactic parsing (SCISSOR, 
SYNSEM) 18 
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Semantic Parsing Renaissance  

•  In 2005, Luke Zettlemoyer 
started developing a CCG-based 
approach to learning semantic 
parsers. 
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•  I met Luke at AAAI-05, where he informed 
me that his interest in semantic parsing 
originated from learning of my work from 
his undergrad advisor at NC-State, UT alum 
James Lester. 



Present Foci of Semantic Parsing  

•  Reducing supervision from full MR’s to 
query-answer pairs, other types of weak 
supervision, or unsupervised learning.  

•  Scaling up to broader-coverage domains, such 
as querying Freebase. 

•  Grounded learning that connects language to 
perception and action. 
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Learning from Queries and Answers 

•  Instead of training on gold-standard MRs, 
just train on gold-standard answers: 
–  “What is the state with the smallest area?”⇒ 

“Rhode Island” 
•  Using learning methods for structured 

output (Clarke et al., 2010). 

•  Using “dependency based” latent logical 
forms (Liang et al., 2011). 
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Learning from Mixed-Initiative Dialog 

•  Learn to parse harder sentences by using user 
interaction to break them down into simpler 
components through “clarification dialogs” (Artzi 
& Zettlemoyer, 2011). 
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SYSTEM: how can i help you? (OPEN TASK) 
USER: i would like to fly from atlanta georgia to london england on september twenty fourth 
in the early evening i would like to return on october first departing 
from london in the late morning 
SYSTEM: leaving what city? (ASK:x:from(fl; x)) 
USER: atlanta georgia 
SYSTEM: leaving atlanta. (CONFIRM:from(fl; ATL)) going to which city? (ASK:x:to(fl; x)) 
USER: london 
SYSTEM: arriving in london england. (CONFIRM:to(fl;LON)) what date would you like to 
depart atlanta? (ASK:x:from(fl; ATL) ^ departdate (fl; x)) 
USER: september twenty fourth in the early evening 
[conversation continues] 



Unsupervised Learning 

•  Use relational clustering of words and 
phrases to automatically induce a “latent” 
set of semantic predicates for types and 
relations from dependency-parsed text. 
(Poon & Domingos, 2008; Titov & Klementiev, 
2011) 
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Scaling Up  

•  Several recent projects have focused on 
scaling up to databases with large 
ontologies/schemas like Freebase. 
– Use standard schema-matching techniques to 

extend the lexicon (Cai & Yates, 2013).  

– Augment a CCG parser with on-the-fly 
ontology matching (Kwiatkowski et al., 2013). 

– Learn to automatically add “bridging” 
predicates to the query (Berant at al., 2013). 
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Grounded Semantic Parsing 

•  Produce meaning representations that can 
be automatically executed in the world (real 
or simulated) to accomplish specific goals. 

•  Learn only from language paired with the 
ambiguous “real-world” context in which it 
is naturally used.  
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See my AAAI-2013 Keynote Invited Talk 
on “Grounded Language Learning” 

on videolectures.net 
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Learning to Follow Directions  
in a Virtual Environment 

•  Learn to interpret navigation instructions in a 
virtual environment by simply observing 
humans giving and following such directions 
(Chen & Mooney, AAAI-11). 

•  Eventual goal: Virtual agents in video games 
and educational software that automatically 
learn to take and give instructions in natural 
language. 
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(MacMahon, et al. AAAI-06) 
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Sample Navigation Instructions 

• Take your first left.  Go all the 
way down until you hit a dead end. 

Start	
   3 

H 4 

• 28 

End	
  



Sample Navigation Instructions 

3 

H 4 

• Take your first left.  Go all the 
way down until you hit a dead end. 

Observed	
  primi1ve	
  ac1ons:	
  
Forward,	
  Le9,	
  Forward,	
  Forward	
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End	
  



Sample Navigation Instructions 
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H 4 

• Take your first left.  Go all the 
way down until you hit a dead end. 

•  Go towards the coat hanger and 
turn left at it.  Go straight down the 
hallway and the dead end is 
position 4. 

• Walk to the hat rack.  Turn left.  
The carpet should have green 
octagons.  Go to the end of this 
alley. This is p-4. 

• Walk forward once.  Turn left.   
Walk forward twice. Observed	
  primi1ve	
  ac1ons:	
  

Forward,	
  Le9,	
  Forward,	
  Forward	
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Start	
  

End	
  



Observed Training Instance in Chinese 



Executing Test Instance in English 
(after training in English) 



Navigation-Instruction Following 
Evaluation Data 

•  3 maps, 6 instructors, 1-15 followers/direction 
	
  

	
  

Paragraph	
   Single-­‐Sentence	
  

#	
  	
  Instruc1ons	
   706	
   3,236	
  

Avg.	
  #	
  sentences	
   5.0	
  (±2.8)	
   1.0	
  (±0)	
  

Avg.	
  #	
  words	
   37.6	
  (±21.1)	
   7.8	
  (±5.1)	
  

Avg.	
  #	
  ac1ons	
   10.4	
  (±5.7)	
   2.1	
  (±2.4)	
  



End-to-End Execution Evaluation 

•  Test how well the system follows new directions in 
novel environments. 
–  Leave-one-map-out cross-validation. 

•  Strict metric: Correct iff the final position exactly 
matches goal location. 

•  Lower baseline:  
–  Simple probabilistic generative model of executed plans 

without language. 

•  Upper bounds: 
–  Supervised semantic parser trained on gold-standard plans. 
–  Human followers. 
–  Correct execution of instructions. 34 



End-to-End Execution Results 
English 
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End-to-End Execution Results 
English vs. Mandarin Chinese 
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Other Work on  
Grounded Semantic Parsing 

•  See the final three talks of the workshop: 
– Asking for Help Using Inverse Semantics 

Stefanie Tellex 
– Computing with Natural Language 

Percy Liang  
– Grounded Semantic Parsing 

Luke Zettlemoyer 
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Future:  
Integrating Logical and Distributional Semantics 

•  Standard semantic parsing requires being 
given or creating a fixed ontology of 
properties and relations with binary truth-
values. 

•  Developing a broad-coverage ontology is 
difficult. 

•  Does not account for the “graded” (non-
binary) nature of linguistic meaning. 
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Distributional (Vector-Space) 
Lexical Semantics 

•  Represent word meanings as points (vectors) 
in a (high-dimensional) Euclidian space. 

•  Dimensions encode aspects of the context in 
which the word appears (e.g. how often it co-
occurs with another specific word). 

•  Semantic similarity defined as distance 
between points in this semantic space. 

•  Many specific mathematical models for 
computing dimensions and similarity 
–  1st model (1990): Latent Semantic Analysis (LSA) 39 



Sample Lexical Vector Space 
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dog 
cat 

man 
woman 

bottle cup 

water 

rock 

computer 
robot 



Issues with Distributional Semantics 

•  How to compose meanings of larger phrases and 
sentences from lexical representations? (many 
recent proposals…) 

•  None of the proposals for compositionality 
capture the full representational or inferential 
power of FOPC (Grefenstette, 2013). 
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“You can’t cram the meaning of a whole  
%&!$# sentence into a single $&!#* vector!” 



Using Distributional Semantics with 
Standard Logical Form 

•  Recent work on unsupervised semantic 
parsing and Lewis and Steedman (2013) 
automatically create an ontology from 
distributional information but do not allow 
gradedness and uncertainty in the final 
semantic representation and inference. 
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Formal Semantics for Natural Language 
using Probabilistic Logical Form 

•  Represent the meaning of natural language 
in a formal probabilistic logic (Beltagy et al., 
2013, 2014). 
– Markov Logic Networks (MLNs) 
– Probabilistic Similarity Logic (PSL) 

             
            “Montague meets Markov”  
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Markov Logic  
(Richardson & Domingos, 2006) 

•  Set of weighted clauses in first-order predicate logic. 
•  Larger weight indicates stronger belief that the clause 

should hold. 
•  MLNs are templates for constructing Markov 

networks for a given set of constants 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

MLN Example: Friends & Smokers 



Markov Logic Inference 

•  Infer probability of a particular query given a set 
of evidence facts. 
– P(Cancer(Anna) | Friends(Anna,Bob),Smokes(Bob)) 



System Architecture 
(Garrette et al. 2011, 2012; Beltagy et al., 2013, 2014) 
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Sent1 
BOXER Rule 

Base 

result 

Sent2 

LF1 

LF2 
Dist. Rule 

Constructor 

Vector Space MLN/PSL 
Inference 

•  BOXER [Bos, et al. 2004]: maps sentences to 
logical form 

•  Distributional Rule constructor: generates 
relevant soft inference rules based on distributional 
similarity 

•  MLN/PSL: probabilistic inference  
•  Result: degree of entailment or semantic similarity 

score (depending on the task) 



Sample RTE Problem 

T: “A man is slicing a pickle.” 
      ∃x,y,z(man(x) ∧ slice(y) ∧ Agent(x,y) ∧ 
                 pickle(z) ∧ Patient(z,y))   
H: “A guy is cutting a cucumber.” 
      ∃x,y,z(guy(x) ∧ cut(y) ∧ Agent(x,y) ∧ 
                 cucumber(z) ∧ Patient(z,y))   
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Compute P(H | T) in Markov Logic 



Distributional Lexical Rules 

•  For every pair of words (a, b) where a is in T 
and b is in H add a soft rule relating the two. 
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∀𝑥  (𝑎(𝑥)→𝑏(𝑥))      𝑤𝑡(𝑎,𝑏) 

∀𝑥  (𝑚𝑎𝑛(𝑥)→𝑔𝑢𝑦(𝑥))      𝑤𝑡(𝑚𝑎𝑛,𝑔𝑢𝑦) 
∀𝑥  (𝑠𝑙𝑖𝑐𝑒(𝑥)→𝑐𝑢𝑡(𝑥))      𝑤𝑡(𝑠𝑙𝑖𝑐𝑒,𝑐𝑢𝑡) 

: 
: 



For Details See Our Poster: 

    Beltagy, I., Erk, K., and Mooney, R.J., 
“Semantic Parsing using Distributional 
Semantics and Probabilistic Logic” 
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Conclusions 

•  Past: Semantic parsing has a long, rich history. 
•  Present: There is blossoming of recent work, 

particularly in reducing supervision, scaling 
up, and grounding. 

•  Future: It’s bright, particularly for integrating 
distributional and logical semantics. 
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   Thanks to Yoav, Tom, and Jonathan for    
organizing this exciting workshop!  


