Combining Formal and Distributional Models of Temporal and Intensional Semantics

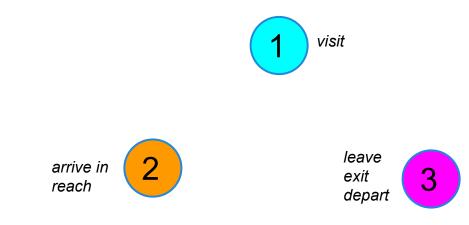
Mike Lewis and Mark Steedman

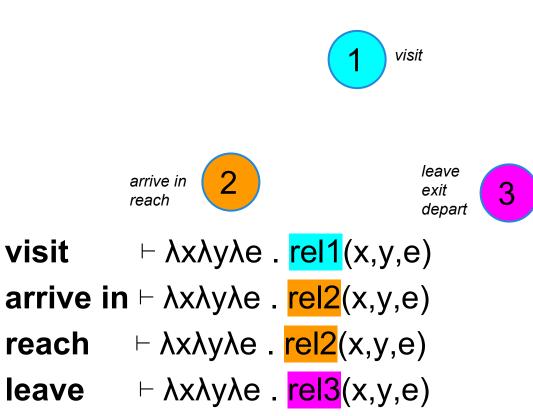
Inference with Temporal Senantics

Mike is visiting Baltimore ⇒ Mike has arrived in Baltimore ⇒ Mike will leave Baltimore ≠ Mike has left Baltimore

Inference with Temporal Senantics

Mike is visiting Baltimore ⇒ Mike has arrived in Baltimore ⇒ Mike will leave Baltimore ≠ Mike has left Baltimore


Temporal information can be expressed by both function words and content words



• Hand built lexicon for function words

• Symbolic content word interpretations from distributional semantics

• CCG for compositional semantics

Mike	reached	Baltimore
NP	(S\NP)/NP	NP
mike	λγλχλe . <mark>rel2</mark> (x,y,e)	baltimore

S\NP $\lambda x \lambda e$. rel2(x, baltimore)

S λe . <mark>rel2</mark>(mike, baltimore, e)

Mike arrived in Baltimore

rel2(mike, baltimore, e)

⇒ Mike reached Baltimore Image: Second state in the second state in the second state is a second state is

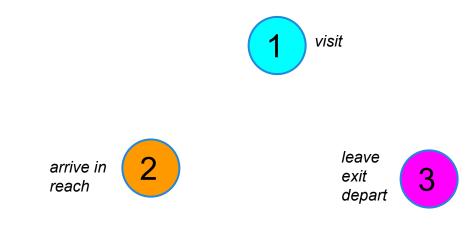
Mike	didn't
NP	(S\NP)/(S\NP)
mike	λρλχλe. ¬p(x,e)

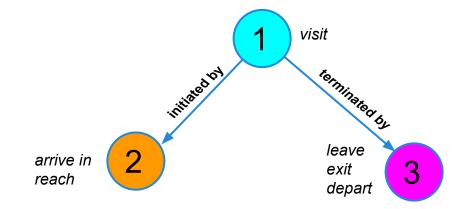
reachBaltimore(S\NP)/NPNP $\lambda y \lambda x \lambda e$.rel2(x, y, e)baltimore

S\NP $\lambda x \lambda e$. rel2(x, baltimore)

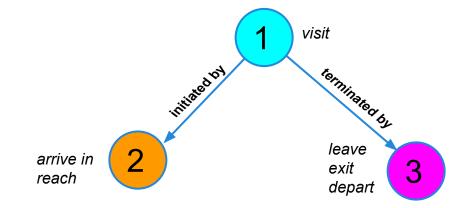
S λe . ¬<mark>rel2</mark>(mike, baltimore, e)

Mike didn't arrive in Baltimore


¬rel2(mike, baltimore)


Mike didn't reach Baltimore

Simple clustering is not enough


 Models words as either synonyms or unrelated

 Many lexical semantic relations: temporal, causal, hypernyms, etc.

Learn graph structures capturing relations between events Similar to *Scaria et al. (2013)*

arrive in $\vdash \lambda x \lambda y \lambda e$.rel2(x,y,e)reach $\vdash \lambda x \lambda y \lambda e$.rel2(x,y,e)leave $\vdash \lambda x \lambda y \lambda e$.rel3(x,y,e)

visit ⊢ λxλyλe . rel1(x,y,e) ∧ ∃ e'[rel2(x,y,e') ∧ before(e,e')] ∃ e''[rel3(x,y,e'') ∧ after(e,e'')]

Hand-build lexical entries for auxiliary verbs, using same temporal relations:

has⊢ λρλxλe . before(r, e) ∧ p(x, e)will⊢ λρλxλe . after(r, e) ∧ p(x, e)is⊢ λρλxλe . during(r, e) ∧ p(x, e)used⊢ λρλxλe . before(r, e) ∧ p(x, e) ∧□ ∃ e'[during(r, e) ∧ p(x, e')]

MikewillleaveBaltimoreNP $(S\setminus NP)/(S\setminus NP)$ $(S\setminus NP)/NP$ NPmike $\lambda p \lambda x \lambda e. p(x,e) \wedge after(r,e)$ $\lambda y \lambda x \lambda e. rel3(x,y,e)$ baltimore

S\NP λxλe . <mark>rel3</mark>(x, baltimore)

S\NP $\lambda x \lambda e . \frac{rel3}{(x, baltimore, e)} \Lambda \frac{after}{(r,e)}$

S $\lambda e \cdot \frac{\text{rel3}}{\text{mike, baltimore, e}} \wedge \frac{\text{after}}{\text{after}}(r,e)$

Mike is visiting Baltimore

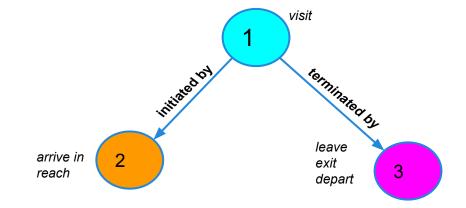
 $\exists e[rel1(mike, baltimore, e) \land during(r,e)]$ $\land \exists e'[rel2(mike, baltimore, e') \land before(e,e')] \land$ $\land \exists e''[rel3(mike, baltimore, e) \land after(e'',e)]$

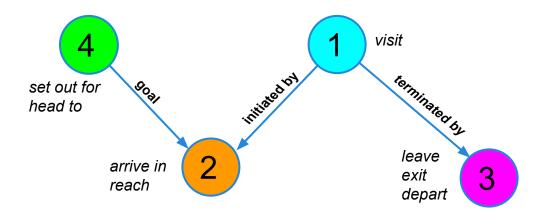
Mike is visiting Baltimore

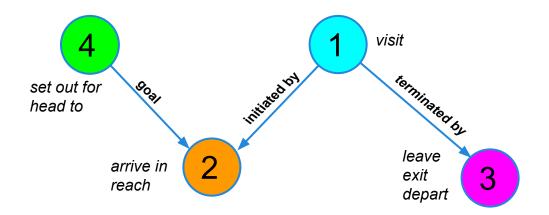
 $\exists e[rel1(mike, baltimore, e) \land during(r,e)]$ $\land \exists e'[rel2(mike, baltimore, e') \land before(e,e')] \land$ $\land \exists e''[rel3(mike, baltimore, e) \land after(e'',e)]$

\Rightarrow

Mike will leave Baltimore


 $\exists e[rel3(mike, baltimore, e) \land after(r,e)]$


Mike set out for Baltimore


- ⇒ Mike tried to reach Baltimore
- ⇒ Mike headed to Baltimore
- ⇒ Mike reached Baltimore

Mike failed to reach Baltimore

- ⇒ Mike tried to reach Baltimore
- ⇒ Mike headed to Baltimore
- ⇒ Mike didn't reach Baltimore

set out for $\vdash \lambda x \lambda y \lambda e$. rel4(x,y,e) $\land \diamond \exists e'[rel2(x,y,e') \land goal(e,e')]$

try \vdash λpλxλe. $\exists e'[goal(e, e') \land \diamond p(x, e')]$

- **try** \vdash λpλxλe. $\exists e'[goal(e, e') \land \diamond p(x, e')]$
- fail ⊢ λρλxλe. ∃e'[goal(e, e') ∧ ◊ p(x,e')] ∧ ¬∃e''[goal(e, e'') ∧ p(x, e'')]

Mike set out for Baltimore

∃e[<mark>rel4</mark>(x,y,e) ∧ ∃e'[<mark>rel2</mark>(mike, baltimore,e') ∧ <mark>goal</mark>(e,e')]

⇒ Mike tried to reach Baltimore ◊∃ e'[rel2(mike, baltimore, e') ∧ goal(e,e')]

Evaluation

Conclusions

 Many inferences rely on complex interaction of formal and lexical semantics

 Recent work gives us the tools to incorporate more linguistics into computational semantics