
Proceedings of the ACL 2014 Workshop on Semantic Parsing, pages 61–65,
Baltimore, Maryland USA, June 26 2014. c©2014 ACL 2014 Workshop on Semantic Parsing

On maximum spanning DAG algorithms for semantic DAG parsing

Natalie Schluter
Department of Computer Science

School of Technology, Malmö University
Malmö, Sweden

natalie.schluter@mah.se

Abstract

Consideration of the decoding problem
in semantic parsing as finding a maxi-
mum spanning DAG of a weighted di-
rected graph carries many complexities
that haven’t been fully addressed in the lit-
erature to date, among which are its ac-
tual appropriateness for the decoding task
in semantic parsing, not to mention an ex-
plicit proof of its complexity (and its ap-
proximability). In this paper, we con-
sider the objective function for the maxi-
mum spanning DAG problem, and what it
means in terms of decoding for semantic
parsing. In doing so, we give anecdotal
evidence against its use in this task. In ad-
dition, we consider the only graph-based
maximum spanning DAG approximation
algorithm presented in the literature (with-
out any approximation guarantee) to date
and finally provide an approximation guar-
antee for it, showing that it is an O(1

n) fac-
tor approximation algorithm, where n is
the size of the digraph’s vertex set.

1 Introduction

Recent research in semantic parsing has moved at-
tention towards recovering labeled digraph repre-
sentations of the semantic relations corresponding
to the linguistic agendas across a number of theo-
ries where simple tree representations are claimed
not to be expressive enough to capture senten-
tial meaning. As digraph structures presented in
predominant semantic graph databases are mainly
acyclic, the semantic parsing problem has some-
times become associated with a maximum span-
ning directed acyclic graph (MSDAG) decoding
problem (McDonald and Pereira, 2006; Sagae and
Tsujii, 2008; Titov et al., 2009), in analogy and
perhaps as a generalisation of the maximum span-

ning tree decoding problem for syntactic depen-
dency parsing.

The appropriateness of finding the MSDAG in
decoding for semantic parsing has, however, never
been fully motivated, and in fact carries more
complexities than that of maximum spanning tree
(MST) decoding for syntactic parsing. In this pa-
per, we discuss the appropriateness of MSDAG
decoding in semantic parsing, considering the pos-
sible objective functions and whether they match
our linguistic goals for the decoding process. Our
view is that they probably do not, in general.

In addition to the problem of not being suffi-
ciently synchronised with our linguistic intuitions
for the semantic parsing decoding problem, the
MSDAG problem itself carries with it its own
complexities, which are still in the process of
becoming more understood in the algorithms re-
search community. McDonald and Pereira (2006)
claim that the MSDAG problem is NP-hard, cit-
ing (Heckerman et al., 1995); however, there is
no MSDAG problem in this latter work, and no
explicit reduction to any problem presented in
(Heckerman et al., 1995) has been published to
date. We point out that Schluter (submitted) ex-
plicitly provides a linear reduction to MSDAG
from the problem of finding a minimum weighted
directed multicut (IDMC), showing MSDAG’s
NP-hardness; this reduction also yields a result
on the approximability of MSDAG, namely that
it is APX-hard. We show in this paper that the ap-
proximation algorithm presented without any ap-
proximation guarantee in (McDonald and Pereira,
2006) is, in fact, a O(1

n) factor approximation al-
gorithm, where n is the size of the graphs vertex
set. This is not particularly surprising given the
problem’s APX-hardness.

Following some preliminaries on weighted di-
graphs (Section 2), we make the MSDAG prob-
lem precise through a discussion of the objective
function in question and briefly question this ob-

61

jective function with respect to decoding in se-
mantic parsing (Section 3). Finally, we discuss the
only other graph-based (approximation) algorithm
in the literature and prove its approximation guar-
antee (Section 4), followed by some brief conclu-
sions (Section 5).

2 Preliminaries

A directed graph (or digraph) G is a pair (V,E)
where V is the set of nodes and E is the set of
(directed) edges. E ⊂ V × V is a set of ordered
pairs of vertices. For u, v ∈ V , if (u, v) ∈ E, then
we say there is an “edge from u to v”. If there is
any confusion over the digraph we are referring to,
then we disambiguate by using the notation G :=
(E(G), V (G)).

If all edges e ∈ E(G) are associated with a real
number, a weight w : E(G)→ R, then we call the
digraph weighted. In this paper, all digraphs are
weighted and weights are positive.

For a subset of edges U of a weighted di-
graph, we set w(U) :=

∑
e∈U w(e). Simi-

larly, for a weighted digraph G, we set w(G) :=∑
e∈E(G) w(e).
We denote the size of a set S, by |S|.
For G = (V,E), let u1, . . . , uk ∈ V and

(ui, ui+1) ∈ E, for each i ∈ [k − 1], then we
say that there is path (also directed path, or di-
path) of length (k− 1) from u1 to uk in G. If also
(uk, u1) ∈ E, then we say that u1, u2, . . . , uk, u1

is a cycle of length k in G.
A directed acyclic graph (DAG) is a directed

graph with no cycles. There is a special kind of
DAG, which has a special node called a root with
no incoming edges and in which there is a unique
path from the root to all nodes; this is called a tree.

Finally, a tournament is a digraph in which
all pairs of vertices are connected by exactly one
edge. If, in addition, the edges are weighted, then
we call the digraph a weighted tournament.

3 Objective functions for finding an
MSDAG of a digraph

We first make precise the objective function for
the MSDAG problem, by considering two sepa-
rate objective functions, one additive and one mul-
tiplicative, over the weights of edges in the optimal
solution:

D∗ := arg max
D a spanning DAG of G

∑
e∈E(D)

w(e), and (1)

D∗ := arg max
D a spanning DAG of G

∏
e∈E(D)

w(e). (2)

Maximising Equation (2) amounts to concur-
rently minimising the number of edges of weight
less than 1 in the optimal solution and maximis-
ing the number of edges of weight at least 1. In
fact, if all edge weights are less than 1, then this
problem reduces to finding the MST. However, the
objective in semantic parsing in adopting the MS-
DAG problem for decoding is to increase power
from finding only MSTs. Therefore, this version
of the problem is not the subject of this paper. If
a graph has even one edge of weight greater than
1, then all edges of lesser weights should be dis-
carded, and for the remaining subgraph, maximis-
ing Equations (1) or (2) is equivalent.

Maximising Equation (1) is complex and under
certain restrictions on edge weights may optimise
for simply the number of edges (subject to being a
DAG). For example, if the difference between any
two edge weights is less than 1

|E(G)| × w(e) for
the smallest weighted e in E(G), then the prob-
lem reduces to finding the spanning DAG with the
greatest number of edges, as shown by Proposition
1.

Proposition 1. Let G be a weighted digraph, with
minimum edge weight M . Suppose the difference
in weight between any two edges of G is at most

1
|E(G)|×M . Then an MSDAG for G maximises the
number of edges of any spanning DAG for G.

Proof. Suppose D1, D2 are spanning DAGs for G,
such that (without loss of generality) |E(D1)| =
|E(D2)| + 1, but that D2 is an MSDAG and that
D1 is not. We derive the following contradiction.

w(D2) =
∑

e∈E(D2)

w(e)

≤ |E(D2)| ·M + |E(D2)| ·
(

1

|E(G)| ·M
)

< |E(D2)| ·M + M

= |E(D1)| ·M
≤

∑
e∈E(D2)

w(e)

= w(D1)

Admittedly, for arbitrary edge weights, the rela-
tion between the sum of edge weights and number
of edges is more intricate, and it is this problem
that we refer to as the MSDAG problem in this
paper. However, the maximisation of the number
of edges in the MSDAG does play a role when

62

using Equation (1) as the objective function, and
this may be inappropriate for decoding in seman-
tic parsing.

3.1 Two linguistic issues of in MSDAG
decoding for semantic parsing

We can identify two important related issues
against linguistic motivation for the use of MS-
DAG algorithms in decoding for semantic parsing.
The first problem is inherited from that of the arc-
factored model in syntactic parsing, and the sec-
ond problem is due to MSDAGs constrained max-
imisation of edges discussed above.

In the arc-factored syntactic parsing paradigm,
it was shown that the MST algorithm could be
used for exact inference (McDonald et al., 2005).
However, one problem with this paradigm was that
edges of the inferred solution did not linguisti-
cally constrain each other. So, for example, a verb
can be assigned two separate subject dependents,
which is linguistically absurd. Use of the MS-
DAG algorithm in semantic parsing corresponds,
in fact, to a generalisation of the arc-factored syn-
tactic parsing paradigm to semantic parsing. As
such, the problem of a lack of linguistic constraints
among edges is inherited by the arc-factored se-
mantic parsing paradigm.

However, MSDAG decoding for semantic pars-
ing suffers from a further problem. In MST de-
coding, the only constraint is really that the output
should have a tree structure; this places a precise
restriction on the number of edges in the output
(i.e., n − 1), unlike for MSDAGs. From our dis-
cussion above, we know that the MSDAG prob-
lem is closely related to a constrained maximisa-
tion of edges. In particular, a candidate solution s
to the problem that is not optimal in terms of to-
tal weight may, however, be linguistically optimal;
adding further edges to s would increase weight,
but may be linguistically undesirable.

Consider the tree at the top of Figure 1, for the
example John loves Mary. In decoding, this tree
could be our linguistic optimal, however according
to our additive objective function, it is more likely
for us to obtain either of the bottom DAGs, which
is clearly not what is wanted in semantic parsing.

4 Related Research and an
Approximation Guarantee

The only algorithm presented to date for MSDAG
is an approximation algorithm proposed by Mc-

John loves Mary

John loves Mary John loves Mary

Figure 1: Possible spanning DAGs for John loves
Mary.

Donald and Pereira (2006), given without any ap-
proximation guarantee. The algorithm first con-
structs an MST of the weighted digraph, and
then greedily attempts to add remaining edges
to the MST in order of descending weight, so
long as no cycle is introduced. Only part of
this algorithm is greedy, so we will refer to it as
semi-greedy-MSDAG. Given the fact that MS-
DAG is APX-hard (Schluter, submitted), the fol-
lowing approximation guarantee is not surprising.

Theorem 2. semi-greedy-MSDAG is an O(1
n)

factor approximation algorithm for MSDAG.

Proof. We separate the proof into two parts. In
Part 1, we first consider an easy worst case
scenario for an upper bound on the error for
semi-greedy-MSDAG, without any considera-
tion for whether such a graph actually exists. Fol-
lowing this in Part 2, we construct a family of
graphs to show that this bound is tight (i.e., that
the algorithm exhibits worst imaginable behaviour
for this family of graphs).

Part 1. For G a digraph, let D be the output of
semi-greedy-MSDAG on G, and D∗ be an MS-
DAG for G. The worst case is (bounded by the
case) where the algorithm finds an MST T ∗ for
G but then cannot introduce any extra edges to ob-
tain a spanning DAG of higher weight, because the
addition of any extra edges would induce a cycle.
For G’s nodes, we suppose that |V (G)| > 3. For
edges, we suppose that all the edges in T ∗ have
equally the largest weight, say wmax, of any edge
in E(G), and that all other edges in E(G) have
weight O(wmax). We can do this, because it gives
an advantage to T ∗.

We suppose also that the underlying undirected
graph of G is complete and that the true MSDAG
for G is D∗ := (V (G), E(G)− E(T ∗)).

This clearly must be the worst imaginable case:
that T ∗ shares no edges with D∗, but that D∗ con-

63

tains every other possible edge in the graph, with
the weight of every edge in D∗ being at most the
weight of the maximum weighted edge of those
of T ∗ (remember we are trying to favour T ∗). No
other imaginable case could introduce more edges
to D∗ without inducing a cycle. So, for all G,

w(D∗) = O

(
(n− 1)2 · wmax

2

)
= O(n2·wmax),

and we had that w(T ∗) = w(D) = O(n · wmax).
So at very worst, semi-greedy-MSDAG finds
a spanning DAG D of weight within O(1

n) of the
optimal.

Part 2. We now show that this bound is tight.
We construct a family of graphs Gn = (Vn, En) as
follows. Vn := {v0, v1, v2, . . . , vn}, with n > 3,
and we suppose that n is even. Let c ∈ R be some
constant such that c > 3. We place the following
edges in En:

(E1) (vi, vi+1) of weight c for all i ∈ {0, . . . , n −
1} into En, creating a path from v0 to vn of
length n where every edge has weight c, and

(E2) (vi, vj) of weight c− 1 for all j ∈ {2, i− 1},
i ∈ {2, . . . , n}.

So, in addition to the path defined by the edges in
(E1), Gn − {v0} contains a weighted tournament
on n− 1 nodes, such that if j < i, then there is an
edge from i to j.

Let us denote the MST of Gn by T ∗n
and the maximal spanning tree obtainable by
semi-greedy-MSDAG, by Dn. We will show
that the (unique) MSDAG of Gn is the graph D∗n
that we construct below.

It is easy to see that the MST T ∗n of Gn consists
of the edges in (E1), and that no further edges can
be added to T ∗n without creating a cycle. So, Dn =
T ∗n .

On the other hand, we claim that there is a
unique D∗n consisting of:

1. the edge (v0, v1),
2. the edges (v2i−1, v2i) for all i ∈
{1, . . . , n/2} into E(D∗n), that is every
second edge in the path described in (E1),
and

3. all the edges from (E2) except for (v2i, v2i−1)
for all i ∈ {1, . . . , n/2}.

We can easily see that D∗n is at least maximal. The
only edges not in D∗n are ones that are parallel

to other edges. So, introducing any other edge
from (E2) would mean removing an edge from
(E1), which would decrease D∗n’s overall weight.
Moreover, notice that introducing any other edge
from (E1), say (vk−1, vk) would require remov-
ing two edges (from (E2)), either (vk, vk−1) and
(vk+1, vk−1) or (vk, vk−1) and (vk, vk+1), to avoid
cycles in D∗n, but this also decreases overall
weight. We extend these two simple facts in the
remainder of the proof, showing that D∗, in addi-
tion to being maximal, is also a global maximum.

We prove the result by induction on n (with n
even), that D∗n is the MSDAG for Gn. We take
n = 4 as our base case.

For G4 (see Figure 2), E(G4)−E(D∗4) contains
only three edges: the edge (v2, v3) of weight c and
the edges (v4, v3) and (v2, v1) of weight (c − 1).
Following the same principles above, adding the
edge (v2, v1) would entail removing an edge of
higher weight; the same is true of adding the edge
(v4, v3). No further edges in either case could
be added to make up this difference and achieve
greater weight than D∗4. So the only option is to
add the edge (v2, v3). However, this would entail
removing either the two edges (v3, v2) and (v4, v2)
or (v3, v2) and (v3, v4) from D∗4, both of which ac-
tions results in lower overall weight.

Now suppose D∗n−2 is optimal (for n ≥ 6,
n even). We show that this implies D∗n is op-
timal (with n even). Consider the two sub-
graphs Gn−2 and H of Gn induced by the sub-
sets of V (Gn), V (Gn−2) = {v0, . . . , vn−2} and
V (H) := {vn−1, vn} respectively (so H =
(V (H), {(vn−1, vn), (vn−1, vn)})). We are as-
suming that the MSDAG of Gn−2 is D∗n−2. More-
over, the MSDAG of H is a single edge, DH :=
(V (H), {(vn−1, vn)}).

D∗n includes the MSDAGs (D∗n−2 and DH) of
these two digraphs, so for these parts of D∗n, we
have reached an upper bound for optimality. Now
we consider the optimal way to connect D∗n−2 and
DH to create D∗n.

Let C denote the set of edges in Gn which
connect DH to Gn−2 and vice versa. C =
{(vn−2, vn−1)} ∪ {(un, ui) | 1 ≤ i < n} ∪
{(un−1, ui) | 1 ≤ i < n − 1}. Note that the
only edge from C not included in D∗n is eC :=
(vn−2, vn−1). By the discussion above, we know
that including eC would mean excluding two other
edges from C of weight at least (c−1), which can-
not be optimal. Therefore D∗n must be optimal.

64

0 1 2 3 4

(c-1) (c-1)

(c-1)

(c-1)

c

c

c c

(c-1) (c-1)

Figure 2: G4, with D∗4 in blue and green and T ∗4 in red and green.

So we have constructed a family of graphs Gn

where w(Dn) = w(T ∗n) = nc and

w(D∗n) =

(
n−1∑
i=0

i(c− 1) + (n · c)
)
− (

n

2
· c)

=
n(n− 1)

2
(c− 1)− n

2
· c.

This completes the proof that
semi-greedy-MSDAG is an

O

(
nc

n(n−1)
2

(c−1)−n
2
·c

)
= O(1

n) factor ap-

proximation algorithm for MSDAG.

Now let us consider the version of the state-
ment of the MSDAG problem that, rather than
maximising the weight of a spanning DAG D∗

of a weighted digraph G, looks to minimise the
weight of the set C∗ of edges that must be re-
moved from G in order for G − C∗ to be an MS-
DAG for G. Clearly these problems are identical.
We refer to the minimisation version of the state-
ment as MSDAGC , and to C∗ as the complement
(in G) of the MSDAG D∗ := G − C∗. Also, let
semi-greedy-MSDAGC be the same algorithm
as semi-greedy-MSDAG except that it outputs
C∗ rather than D∗.

Using the same graphs and proof structure as in
the proof of Theorem 2, the following theorem can
be shown.

Theorem 3. semi-greedy-MSDAGC is
an O(n) factor approximation algorithm for
MSDAGC .

5 Conclusions and Open Questions

This paper provides some philosophical and math-
ematical foundations for the MSDAG problem as
decoding in semantic parsing. We have put for-
ward the view that the objective in semantic pars-
ing is not in fact to find the MSDAG, however it re-
mains open as to whether this mismatch can be tol-
erated, given empirical evidence of MSDAG de-
coding’s utility in semantic parsing. We have also

pointed to an explicit proof of the APX-hardness
(that of (Schluter, submitted)) of MSDAG and
given an approximation guarantee of the only pub-
lished approximation algorithm for this problem.

In particular, Schluter (submitted) provides
an approximation preserving reduction from
MSDAGC to IDMC. Moreover, the best known
approximation ratio for IDMC is O(n

11
23) (Agar-

wal et al., 2007), which yields a better (in terms
of worst case error) approximation algorithm for
MSDAGC . An interesting open problem would
compare these two decoding approximation algo-
rithms empirically for semantic parsing decoding
and in terms of expected performance (or error)
both in general as well as specifically for semantic
parsing decoding.

References
Amit Agarwal, Noga Alon, and Moses Charikar. 2007.

Improved approximation for directed cut problems.
In Proceedings of STOC, San Diego, CA.

D. Heckerman, D. Geiger, and D. M. Chickering.
1995. Learning bayesian networks: The combina-
tion of knowledge and statistical data. Technical re-
port, Microsoft Research. MSR-TR-94-09.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc. of EACL, pages 81–88.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. of HLT-EMNLP, pages
523–530, Vancouver, BC, Canada.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency dag parsing. In 22nd International
Conference on Computational Linguistics (Coling
2008), Manchester, UK.

Natalie Schluter. submitted. On the complexity of
finding a maximum spanning dag and other dag
parsing related restrictions.

Ivan Titov, James Henderson, Paola Merlo, and
Gabrielle Musillo. 2009. Online graph planariza-
tion for synchronous parsing of semantic and syn-
actic dependencies. In Proceedings of IJCAI 2009,
pages 1562–1567.

65

