Language and Reasoning Diversity in Grounded Natural Language Understanding

Yoav Artzi

SiVL, NAACL 2019
Today

Understanding

NLVR
NLVR2 (nlvr.ai)

• Robustness to biases
• Language and reasoning diversity

Acting

Touchdown (touchdown.ai)
DRIF

• Real-life input
• Robotic agents
Biases and Reasoning Diversity

- Implicit biases
- Relatively simple language

VQA

What is the dog carrying?

Stick

CLEVR

Are there an equal number of large things and metal spheres?

Yes

NLVR

there are exactly three squares not touching any edge

TRUE
Natural Language Visual Reasoning (NLVR)

- Isolates compositional reasoning problem
- Box structure encourages set and comparison reasoning
- Controlled environment → focus sentences on specific phenomena
- Compare and contrast for balanced data
- But: synthetic vision and limited lexical diversity

there are exactly three squares not touching any edge

TRUE
There are exactly three squares not touching any edge.

- **True**
- **False**

- Isolates compositional reasoning problem
- Box structure encourages set and comparison reasoning
- Controlled environment \(\rightarrow\) focus sentences on specific phenomena
- Compare and contrast for balanced data
- But: synthetic vision and limited lexical diversity
Natural Language Visual Reasoning (NLVR)

How to generalize this type of data to real images?

- No control of image content
- No box structure for set reasoning
- Can’t generate images for compare and contrast

There are exactly three squares not touching any edge: TRUE
One image shows exactly two brown acorns in back-to-back caps on green foliage.

Task: Determine whether the sentence is true or false about the pair of images.
Natural Language Visual Reasoning for Real (NLVR2)

One image shows exactly two brown acorns in back-to-back caps on green foliage

FALSE

Task: Determine whether the sentence is true or false about the pair of images
One image shows exactly two brown acorns in back-to-back caps on green foliage

- Re-creates the NLVR setup with real web images
- Natural language data
- Paired images analogous to boxes
- Compare and contrast to create balanced data
One image shows exactly two brown acorns in back-to-back caps on green foliage
Data Collection

- Collecting images using search engines
- Sentence writing using compare and contrast
- Validation
1. **Pick 124 synsets from ImageNet**

 Chose synsets that would often appear multiple times in one image: e.g., acorn >> sump pump

 - Allows use of ImageNet models and tools
 - Allows for weak annotation of image content
Image Collection

1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
 Combine synset names with numerical phrases, hypernyms, and similar words

🔍 two acorns
Image Collection

1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. **Remove low-quality images**
 Don’t contain synset, drawings, inappropriate content
Image Collection

1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. Remove low-quality images
4. **Construct sets of eight images**
 Each set must contain at least three *interesting* images (e.g., multiple objects)
1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. Remove low-quality images
4. **Construct sets of eight images**
 Each set must contain at least three interesting images (e.g., multiple objects)
Image Collection

1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. Remove low-quality images
4. **Construct sets of eight images**
 Each set must contain at least three interesting images (e.g., multiple objects)
1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. Remove low-quality images
4. **Construct sets of eight images**
 Each set must contain at least three interesting images (e.g., multiple objects)
Image Collection

1. Pick 124 synsets from ImageNet
2. Generate and execute search queries and get similar images
3. Remove low-quality images
4. Construct sets of eight images
 Each set must contain at least three interesting images (e.g., multiple objects)
Sentence Writing

5. Display a set of randomly paired images

6. Ask workers to select two pairs

7. Workers write a sentence true about the selected pairs, but false about the others
Sentence Writing

5. Display a set of randomly paired images

6. Ask workers to select two pairs

7. Workers write a sentence true about the selected pairs, but false about the others
Sentence Writing

5. Display a set of randomly paired images

6. **Ask workers to select two pairs**

7. Workers write a sentence **true** about the selected pairs, but **false** about the others
Sentence Writing

5. Display a set of randomly paired images

6. Ask workers to select two pairs

7. Workers write a sentence **true** about the selected pairs, but **false** about the others

One image shows exactly two brown acorns in back-to-back caps on green foliage
8. Show each images/sentence pair to another worker and ask them to label it

One image shows exactly two brown acorns in back-to-back caps on green foliage

Validation

TRUE

FALSE

✅
Statistics

- 107,296 total examples
 - 29,680 unique sentences
 - 127,506 unique images
 - 80% train, 20% evenly split to dev and two test sets
- **Agreement:** near perfect ($\alpha = 0.912$, $\kappa = 0.889$)
- **Total cost:** $19,282.99
- **Average sentence length:** 14.8 tokens
- **Vocabulary size:** ~7,500 word types
Related Resources

<table>
<thead>
<tr>
<th></th>
<th>Task</th>
<th>Real Images</th>
<th>Natural Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>VQA</td>
<td>QA</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>COCO Captions</td>
<td>Caption generation</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CLEVR</td>
<td>QA</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>CLEVR-Humans</td>
<td>QA</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>GQA</td>
<td>QA</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>NLVR</td>
<td>Binary classification</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>NLVR2</td>
<td>Binary classification</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Linguistic Analysis

• Analyze 13 semantic and syntactic categories
• Sampled 800 sentences
• Compare to 200 sentences from GQA, VQA, and NLVR
• Release scripts to break down system performance according to categories
Linguistic Analysis

- **Hard cardinality**
- **Soft cardinality**
- **Coordination**
- **Negation**

- **Coreference**
- **Spatial relations**
- **Comparisons**
- **Universal quantifiers**

Bar charts showing different linguistic analyses with categories: NLVR2, NLVR, VQA, and GQA.
One image contains a single vulture in a standing pose with its head and body facing leftward, and the other image contains a group of at least eight vultures.
One dog sled team is moving and one is not

Negation

- NLVR2: 9.6
- NLVR: 9.5
- VQA: 1
- GQA: 2.5

TRUE

FALSE
Universal Quantifiers

Universal quantifiers

All the chairs have backs

NLVR2 NLVR VQA GQA

NLVR2: 16.8
NLVR: 7.5
VQA: 1
GQA: 4.5

TRUE FALSE
Comparisons

There are *more* birds in the image on the left than in the image on the right.
Evaluation

• Accuracy

• Consistency

• Proportion of unique sentences for which predictions are correct for all paired images

[Goldman et al. 2018]
Baselines

Unreleased test set

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text only (RNN)</td>
<td>51.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Image only (CNN)</td>
<td>51.9</td>
<td>7.1</td>
</tr>
<tr>
<td>CNN+RNN</td>
<td>53.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Object Detection</td>
<td>53.5</td>
<td>12.0</td>
</tr>
<tr>
<td>MaxEnt on top of detector does best</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Robust to single-modality biases
- Accuracy and consistency are not to scale
SOTA Visual Reasoning

Unreleased test set

Accuracy Consistency

96.1
Human

51.4
Majority class

51.5 53.0 51.2 53.5
N2NMN FiLM MAC-Network Object Detection
Hu et al. Perez et al. Hudson et al. MaxEnt
2017 2017 2018

CLEVR 83.7% 97.7% 98.9%

• SOTA methods perform poorly
• CLEVR-NLVR2 performance mismatch

Accuracy and consistency are not to scale
Today

Understanding

NLVR
NLVR2 (nlvr.ai)

• Robustness to biases
• Language and reasoning diversity

Acting

Touchdown (touchdown.ai)
DRIF

• Real-life input
• Robotic agents
Realistic Environments

• Most research on instruction following uses simple simulated environments.

• Existing physical environments are simple and built in the lab.

• Real-life environments are both visually and distributionally different.

Chalet [Yan et al. 2018; Misra et al. 2018]

Take watermelon, oranges, and cucumber from the counter. Put them …
The Environment

- Google Street View panoramas
- 29,941 panoramas
- 61,319 edges
- 122,638 states for discrete navigation
Task-focused Navigation

- Writing task: instruct to follow a path and describe the location of an object they hide
- The focused task makes the instruction more natural for the writer
- Guide workers not to count intersections and not to use text and store names
- What do we hide?
Example 1

Orient yourself so that the umbrellas are to the right. Go straight and take a right at the first intersection. At the next intersection there should be an old-fashioned store to the left. There is also a dinosaur mural to the right. Touchdown is on the back of the dinosaur.
Task-focused Navigation

- This formulation allows for multiple tasks:
 - **Navigation** only: given instruction and a starting point, navigate to the goal position
 - **Spatial description resolution (SDR)** only: given a sentence and a panorama, find Touchdown
 - The complete task: navigate first, and then find Touchdown
Data Collection

- A sequence of four tasks on Mechanical Turk
 - Writing, propagation, validation, and segmentation
- Workers use a customized StreetView environment
Task I: Writing

Place Touchdown

Can’t Place Touchdown

Turn so that the trees are to your left. At the first intersection, turn left and stop.
Task I: Writing

Place Touchdown
Can't Place Touchdown

Place Touchdown
Can't Place Touchdown

Place Touchdown
Can't Place Touchdown

Turn so that the trees are to your left. At the first intersection, turn left and stop.

Touchdown is on top of the blue mailbox on the right hand corner.
Task I: Writing

Turn so that the trees are to your left. At the first intersection, turn left and stop. **Touchdown is on top of the blue mailbox on the right hand corner.**
Task II: Propagation

• Touchdown position may be visible from multiple panoramas

• We propagate the location to neighboring panoramas

Turn so that the trees are to your left. At the first intersection, turn left and stop. Touchdown is on top of the blue mailbox on the right hand corner.
Task III: Validation

- Validate instruction by finding Touchdown
- Easy to verify
- Give bonuses to original writer and follower if successful

Turn so that the trees are to your left. At the first intersection, turn left and stop. Touchdown is on top of the blue mailbox on the right hand corner.

You Found Touchdown!

Remaining Attempts: 2
Task IV: Task Segmentation

- Segment the text to the two tasks: navigation and SDR
- Segments may overlap

Target Location Instructions:

Turn so that the trees are to your left. At the first intersection, turn left and stop. Touchdown is on top of the blue mailbox on the right hand corner.

Touchdown is on top of the blue mailbox on the right hand corner.

Submit
What Did We Get?

• Over 200 people wrote and validated instructions

• Collected 9,326 examples, split to 6,526/1,391/1,409 for train/dev/test
Analysis

• Average length is 108 tokens on average
 • 89.6 for navigation, compared to 29.3 in R2R
 • 29.8 for SDR, compared to 8.5 in Google RefExp and 4.4 in ReferItGame
• Relatively large vocabulary size of 5,625, compared to 3,156 for R2R
• Paths are on average 35.2 panoramas, compared to 6 in R2R

[R2R: Anderson et al. 2018; Google RefExp: Mao et al. 2016; ReferItGame: Kazemzadeh et al. 2014]
Linguistic Analysis

• Sampled 25 examples from Touchdown and R2R

• Analyzed for 11 semantic categories

• Report the mean number of instances per example (more analysis in the paper)
...You'll pass three trashcans on your left...

...There is a fire hydrant, the bear is on top...

...up ahead there is some flag poles on your right hand side...

...Follow the road until you see a school on your right...

...You should see a small bridge ahead...

...a brownish colored brick building with a black fence around it...
There is also a dinosaur mural to the right. Touchdown is on the back of the dinosaur.
SDR Evaluation

- Accuracy: predicting the position close enough to the gold position (threshold: 80px)
- Consistency: consider a unique SDR as correct only if solved for all propagated panoramas
- Mean distance error: the distance of the predicted position from the gold position
Test Results

Accuracy vs Consistency vs Distance

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Average</th>
<th>Text2Conv</th>
<th>LingUNet</th>
<th>[Blukis et al. 2018]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.8</td>
<td>5.2</td>
<td>30.4</td>
<td>34.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Consistency</td>
<td>0.6</td>
<td>11.7</td>
<td>11.7</td>
<td>14.6</td>
<td>708</td>
</tr>
<tr>
<td>Distance</td>
<td>744</td>
<td>747</td>
<td>744</td>
<td>708</td>
<td>747</td>
</tr>
</tbody>
</table>

- LingUNet is able to solve some cases.
- But there is a lot of room for improvement.

Accuracy, consistency, and distance are not to scale.
Example: LingUNet

a black doorway with red brick to the right of it, and green brick to the left of it. it has a light just above the doorway, and on that light is where you find Touchdown
Orient yourself so that the umbrellas are to the right. Go straight and take a right at the first intersection. At the next intersection there should be an old-fashioned store to the left. There is also a dinosaur mural to the right.
Navigation Evaluation

• Accuracy: stopping at the annotated goal panorama, or to one of the propagated panoramas

• Mean distance error: the shortest-path distance between the stopping position and the goal

• Success-weighted by edit distance (SED)
Success weighted by Edit Distance (SED)

- Measure edit distance between reference and prediction
- Weight success by distance
- The closer the agent is to the correct execution, success is considered better
Test Results

- Non-learning models show the task is challenging
- No model learns effectively

Accuracy, distance, and SED are not to scale
Today

Understanding

NLVR
NLVR2 (*nlvr.ai*)

Acting

Touchdown (*touchdown.ai*)
DRIF

- Robustness to biases
- Language and reasoning diversity
- Real-life input
- Robotic agents
Dynamic Robot Instruction Following (DRIF)

Go towards the blue fence passing the anvil and tree on the right

\[f(\text{Go towards the blue fence passing the anvil and tree on the right}, \ldots) = \begin{bmatrix} \mathbf{v} \\ \omega \end{bmatrix} \]

- Linear forward velocity
- Angular yaw rate
after the blue bale take a right towards the small white bush before the white bush take a right and head towards the right side of the banana
Today

Understanding

NLVR
NLVR2 (nlvr.ai)

Alane Suhr
Stephanie Zhou (now UMD)

acting

Touchdown (touchdown.ai)

DRIF

Howard Chen
Valts Blukis

Facebook AI Research

Google AI
Today

Understanding

NLVR
NLVR2 (nlvr.ai)

Alane Suhr
Stephanie Zhou (now UMD)

• Robustness to biases
• Language and reasoning diversity

Acting

Touchdown (touchdown.ai)

Howard Chen
Valts Blukis

• Real-life input
• Robotic agents

DRIF
Resources: Visual Understanding to Interaction

nlvr.ai

touchdown.ai

DRIF

CHALET

LANI
[fin]
Orient yourself so that the umbrellas are to the right. Go straight and take a right at the first intersection. At the next intersection there should be an old-fashioned store to the left. There is also a dinosaur mural to the right. Touchdown is on the back of the dinosaur.