Interactive Classification by Asking Informative Questions

Lili Yu, Howard Chen, Sida Wang, Tao Lei, Yoav Artzi

Intent Classification

- Classical classification problems operate on a single user input
- But natural language input can be underspecified and ambiguous

Intent Classification

- Classical classification problems operate on a single user input
- But natural language input can be underspecified and ambiguous

Intent Classification

- Classical classification problems operate on a single user input
- But natural language input can be underspecified and ambiguous

Goal: interact with the user to collect missing information

Challenges

• Interaction data is hard to get, often expensive

• Full-fledged dialogue modeling is data hungry and immature

Challenges

Interaction data is hard to get, often expensive
 Can we bootstrap without user interaction data?

• Full-fledged dialogue modeling is data hungry and immature

Can we design a lightweight model, that is constrained, but effective?

- Natural language intent classification
- We add binary or multi-choice clarification questions with predefined answer set
- At each turn, ask the most informative question, or return the best prediction

Templated Questions and Answer Set

Do you have an online account? {Yes, No}

Do you want to upgrade your service? {Yes, No}

•

What is your phone operating system? {OS, Android, Windows}

Intent Labels

What data limits apply when roaming internationally?

How do I purchase a High Speed Data Roaming?

Delete an individual message on your Samsung.

How do I sign up for Sprint Global Roaming?

•

Troubleshooting issues related to apps on iPhone.

00 Travel out of country. Initial query ${\mathcal X}$

Intent Labels

What data limits apply when roaming internationally?

How do I purchase a High Speed Data Roaming?

Delete an individual message on your Samsung.

How do I sign up for Sprint Global Roaming?

•

Troubleshooting issues related to apps on iPhone.

00 Travel out of country. Initial query ${\mathcal X}$ Do you need to activate global roaming service?

Question q^1

Intent Labels

What data limits apply when roaming internationally?

How do I purchase a High Speed Data Roaming?

Delete an individual message on your Samsung.

How do I sign up for Sprint Global Roaming?

•

Troubleshooting issues related to apps on iPhone.

Question q^1

Intent Labels

What data limits apply when roaming internationally?

How do I purchase a High Speed Data Roaming?

Delete an individual message on your Samsung.

How do I sign up for Sprint Global Roaming?

:

Troubleshooting issues related to apps on iPhone.

Question q^1

Question q^2

Label Probability

Label Probability $p(y_i|X^t)$

Intent label

Interaction at time t

Simplifying assumptions

- 1. User's response depends only on the question asked and the underlying label
- 2. The model deterministically picks a clarification question given the interaction history

Label Probability

Label Probability
$$p(y_i|X^t)$$

Intent label

Interaction at time t

Simplifying assumptions

- 1. User's response depends only on the question asked and the underlying label
- The model deterministically picks a clarification question given the interaction history

Bayesian decomposition

$$p(y_i|X^t) \propto p(r^t|q^t, y_i, X^{t-1}) \cdot p(q^t|y_i, X^{t-1}) \cdot p(y_i|X^{t-1})$$

$$= p(y_i|x) \prod_{\tau=1}^{t} p(r^{\tau}|q^{\tau}, y_i)$$

Initial label distribution User response distribution

Question Selection

Selection criterion

Select questions to maximize the interaction efficiency by maximizing the information gain

Intuitively: selecting the question that provides the most information about the intent label by observing its answer

Information gain computation

Can easily compute the information gain with

$$p(y|x)$$
 and $p(r|q,y)$

Initial label distribution User response distribution

Model the Distributions p(y|x) and p(r|q,y)

- Model the distribution using text similarity
- Shared text embedding space
- Allowing to bootstrap for unseen questions, responses, and targets

text piece RNN text encoder
$$S(u,v) = \mathbf{enc}(u)^{ op} \mathbf{enc}(v)$$
 $p(u|v) = h(u,v;\phi) = \frac{exp(S(u,v))}{\sum_{u'} exp(S(u',v))}$

$$p(y|x) = h(y,x;\phi)$$

$$p(r|q,y) = h(r\#q,y;\phi)$$
 concatenation of answer and question

Treating each variable as text, not a categorical value

Model the Distributions p(y|x) and p(r|q,y)

- Model the distribution using text similarity
- Shared text embedding space
- Allowing to bootstrap for unseen questions, responses, and targets

text piece RNN text encoder
$$S(u,v) = \mathbf{enc}(u)^{ op} \mathbf{enc}(v)$$
 $p(u|v) = h(u,v;\phi) = \frac{exp(S(u,v))}{\sum_{u'} exp(S(u',v))}$

$$p(y|x) = h(y,x;\phi)$$

$$p(r|q,y) = h(r\#q,y;\phi)$$
 concatenation of answer and question

Treating each variable as text, not a categorical value

Policy Controller

Policy controller controls when and how to stop the interaction

Action space:

Ask an informative question

Stop interaction and return best label

Training:

Against user simulator, can extend to

human-in-the loop setting

Model Components

I. Label Probability
$$p(y_i|X^t) \, \propto \, p(y_i|x) \, \prod_{\tau=1}^t \, p(r^\tau|q^\tau,y_i)$$

2. Question Selection

Maximize information gain

3. Model the Distribution

Model p(y|x) and p(r|q,y) using text similarity $h(\cdot;\phi)$

4. Policy Controller

Policy network $f(\cdot; heta)$, trained against a simulator to learn how to stop

Data Collection

- We crowdsourced data to bootstrap the learning process
- Two non-interactive tasks: initial query collection and questionanswer pair collection
- We use the data to
 - ✓ Train text embedding model
 - Create a user simulator for training and evaluation
 - ▼ Train a policy controller

Domains

FAQ Suggestion

Scenario

You would like to use your phone as hotspot for your laptop for some urgent work, but you are worried it gonna cost you lots of money.

Model Predicted FAQ

FAQs related to Wi-Fi hotspots on your samsung, Does it cost more to use my samsung as a mobile Wi-Fi hotspot?

Bird Identification

Bird image

Model Predicted Bird Type
nashville warbler
an example image

Experiments

- Tasks: FAQ suggestion & Bird Identification
- Human evaluation: accuracy and user ratings
- Simulator evaluation: accuracy and cost analysis
- Two settings on FAQ: unseen labels + associated questions unseen labels (zero-shot)

Baselines

- No interaction:
 - Directly return the best predicted intent label
- No initial query interaction:
 Interactions are not conditioned on the initial user query
- Ours (fixed turn):
 - Stop asking questions after a fixed number of turns

Human Evaluation

- Improved accuracy > 90%
- Can generalize to unseen classes and utilize unseen questions

Human Evaluation

- Improved accuracy > 90%
- Can generalize to unseen classes and utilize unseen questions
- Text embedding improves accuracy
- Policy network effectively balances performance and effort

Human Evaluation

User ratings of the interactions

Our model receives higher ratings on Naturalness and Rationality

Conclusion

- ✓ Interacting with the user to collect missing information By modeling user goal, user response, information gain, and termination policy
- √ Cheap: easy to bootstrap Non-interactive data collection, learning with simulator, zero-shot prediction
- ✓ Effective: adding interaction provides substantial improvement Demonstrated from human and simulator evaluation