Interactive Classification by Asking Informative Questions

Lili Yu, Howard Chen, Sida Wang, Tao Lei, Yoav Artzi
Intent Classification

• Classical classification problems operate on a single user input
• But natural language input can be underspecified and ambiguous
Intent Classification

- Classical classification problems operate on a single user input
- But natural language input can be underspecified and ambiguous
Intent Classification

• Classical classification problems operate on a single user input
• But natural language input can be underspecified and ambiguous

Goal: interact with the user to collect missing information
Challenges

- Interaction data is hard to get, often expensive

- Full-fledged dialogue modeling is data hungry and immature
Challenges

• Interaction data is hard to get, often expensive
 Can we bootstrap without user interaction data?

• Full-fledged dialogue modeling is data hungry and immature
 Can we design a lightweight model, that is constrained, but effective?
Interactive Classification

- Natural language intent classification
- We add binary or multi-choice clarification questions with predefined answer set
- At each turn, ask the most informative question, or return the best prediction

Templated Questions and Answer Set

- Do you have an online account? {Yes, No}
- Do you want to upgrade your service? {Yes, No}
- What is your phone operating system? {OS, Android, Windows}
Intent Labels

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>What data limits apply when roaming internationally?</td>
<td></td>
</tr>
<tr>
<td>How do I purchase a High Speed Data Roaming?</td>
<td></td>
</tr>
<tr>
<td>Delete an individual message on your Samsung.</td>
<td></td>
</tr>
<tr>
<td>How do I sign up for Sprint Global Roaming?</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting issues related to apps on iPhone.</td>
<td></td>
</tr>
</tbody>
</table>
Interactive Classification

Initial query x

Travel out of country.

Intent Labels

- What data limits apply when roaming internationally?
- How do I purchase a High Speed Data Roaming?
- Delete an individual message on your Samsung.
- How do I sign up for Sprint Global Roaming?
- Troubleshooting issues related to apps on iPhone.
Interactive Classification

Initial query x

Question q^1

Intent Labels

- What data limits apply when roaming internationally?
- How do I purchase a High Speed Data Roaming?
- Delete an individual message on your Samsung.
- How do I sign up for Sprint Global Roaming?
- Troubleshooting issues related to apps on iPhone.
Interactive Classification

Initial query x

Travel out of country.

Response r^1

Do you need to activate global roaming service?

Yes.

Question q^1

Intent Labels

- What data limits apply when roaming internationally?
- How do I purchase a High Speed Data Roaming?
- Delete an individual message on your Samsung.
- How do I sign up for Sprint Global Roaming?
- Troubleshooting issues related to apps on iPhone.
Initial query x:

Travel out of country.

Response r^1:

Do you need to activate global roaming service?

Yes.

Do you want high speed data roaming?

No.

Response r^2:

Got it! The article below might be helpful:

How do I sign up for Sprint Global Roaming?

Question q^1:

Do you need to activate global roaming service?

Question q^2:

Do you want high speed data roaming?

Intent Labels:

What data limits apply when roaming internationally?

How do I purchase a High Speed Data Roaming

Delete an individual message on your Samsung.

How do I sign up for Sprint Global Roaming?

Troubleshooting issues related to apps on iPhone.
Label Probability $p(y_i | X^t)$

Simplifying assumptions

1. User’s response depends only on the question asked and the underlying label
2. The model deterministically picks a clarification question given the interaction history
Label Probability

\[p(y_i | X^t) \]

Intent label

Interaction at time \(t \)

Simplifying assumptions

1. User’s response depends only on the question asked and the underlying label
2. The model deterministically picks a clarification question given the interaction history

Bayesian decomposition

\[p(y_i | X^t) \propto p(r^t | q^t, y_i, X^{t-1}) \cdot p(q^t | y_i, X^{t-1}) \cdot p(y_i | X^{t-1}) \]

\[= p(y_i | x) \prod_{\tau=1}^{t} p(r^\tau | q^\tau, y_i) \]

Initial label distribution

User response distribution
Question Selection

Selection criterion
Select questions to maximize the interaction efficiency by maximizing the information gain

Intuitively: selecting the question that provides the most information about the intent label by observing its answer

Information gain computation
Can easily compute the information gain with
\[p(y|x) \quad \text{and} \quad p(r|q,y) \]
Initial label distribution \quad User response distribution
Model the Distributions $p(y|x)$ and $p(r|q,y)$

- Model the distribution using text similarity
- Shared text embedding space
- Allowing to bootstrap for unseen questions, responses, and targets

Text piece

$$S(u, v) = \text{enc}(u)^T \text{enc}(v)$$

$$p(u|v) = h(u, v; \phi) = \frac{\exp(S(u, v))}{\sum_{u'} \exp(S(u', v))}$$

Concatenation of answer and question

$$p(y|x) = h(y, x; \phi)$$

$$p(r|q, y) = h(r\#q, y; \phi)$$

Treating each variable as text, not a categorical value
Model the Distributions $p(y|x)$ and $p(r|q,y)$

- Model the distribution using text similarity
- Shared text embedding space
- Allowing to bootstrap for unseen questions, responses, and targets

Text Piece and **RNN Text Encoder**

\[S(u,v) = \text{enc}(u)^T \text{enc}(v) \]

\[p(u|v) = h(u,v;\phi) = \frac{\exp(S(u,v))}{\sum_{u'} \exp(S(u',v))} \]

\[p(y|x) = h(y,x;\phi) \]

\[p(r|q,y) = h(r\#q,y;\phi) \]

Concatenation of answer and question

Treating each variable as text, not a categorical value
Policy Controller

Policy controller controls when and how to stop the interaction

Action space:

Ask an informative question

Stop interaction and return best label

Training:

Against user simulator; can extend to human-in-the-loop setting
Model Components

1. Label Probability
\[p(y_i | X^t) \propto p(y_i | x) \prod_{\tau=1}^{t} p(r^\tau | q^\tau, y_i) \]

2. Question Selection
Maximize information gain

3. Model the Distribution
Model \(p(y|x) \) and \(p(r|q,y) \) using text similarity \(h(\cdot; \phi) \)

4. Policy Controller
Policy network \(f(\cdot; \theta) \), trained against a simulator to learn how to stop
Data Collection

• We crowdsourced data to bootstrap the learning process

• Two non-interactive tasks: initial query collection and question-answer pair collection

• We use the data to
 ✓ Train text embedding model
 ✓ Create a user simulator for training and evaluation
 ✓ Train a policy controller
Domains

FAQ Suggestion

Scenario
You would like to use your phone as hotspot for your laptop for some urgent work, but you are worried it gonna cost you lots of money.

Model Predicted FAQ
FAQs related to Wi-Fi hotspots on your samsung. Does it cost more to use my samsung as a mobile Wi-Fi hotspot?

- **How can I help you with your phone device?**
 1. app or feature information
 2. fee and charge
 3. troubleshoot device
 4. not applicable

- **Does you want to use phone as mobile wi-fi hotspot?**
 - yes

- **Here is the solution:** FAQs related to Wi-Fi hotspots on your samsung. Does it cost more to use my samsung as a mobile Wi-Fi hotspot?

Bird Identification

Model Predicted Bird Type
nashville warbler

Scenario
Here is the bird:
- little yellow bird with grey crown and black eyes

Does the bird have yellow throat color?
- yes

Does the bird have yellow forehead color?
- No

What is the bird breast pattern?
- solid
- spotted
- striped
- multi-colored

This bird is a: nashville warbler
Experiments

• Tasks: FAQ suggestion & Bird Identification

• Human evaluation: accuracy and user ratings

• Simulator evaluation: accuracy and cost analysis

• Two settings on FAQ: unseen labels + associated questions
 unseen labels (zero-shot)
Baselines

- No interaction:
 Directly return the best predicted intent label

- No initial query interaction:
 Interactions are not conditioned on the initial user query

- Ours (fixed turn):
 Stop asking questions after a fixed number of turns
Human Evaluation

- Improved accuracy > 90%
- Can generalize to unseen classes and utilize unseen questions
Human Evaluation

- Improved accuracy > 90%
- Can generalize to unseen classes and utilize unseen questions
- Text embedding improves accuracy
- Policy network effectively balances performance and effort
Our model receives higher ratings on **Naturalness** and **Rationality**.
Conclusion

✓ Interacting with the user to collect missing information
 By modeling user goal, user response, information gain, and termination policy

✓ Cheap: easy to bootstrap
 Non-interactive data collection, learning with simulator, zero-shot prediction

✓ Effective: adding interaction provides substantial improvement
 Demonstrated from human and simulator evaluation

Thank you! https://github.com/asappresearch/interactive-classification