Natural Language for Visual Reasoning

Alane Suhr, Mike Lewis, James Yeh, Yoav Artzi

lic.nlp.cornell.edu/nlvr/

Language and Vision

A small herd of cows in a large grassy field.

What is the dog carrying?

(Chen et al 2015)

(Agrawal et al 2015)

Our goal: natural language with a diverse set of semantic and syntactic phenomenon

Natural Language for Visual Reasoning

There is a box with 3 items of all 3 different colors.

TRUE

Task: determine whether the statement is true or false for the image.

Outline

- Task and environments
- Data collection
- Analysis
- Baselines

Task and Environments

Scatter

There is a box with 3 items of all 3 different colors.

Tower

There are only two towers which has the same base color.

Data collection

- **Goal:** collect natural language descriptions of images and true/false judgments
- Generate images
- Collect natural language sentences
- Validate image/sentence pairs

 Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)

- Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)
- Construct second image with the same type

- Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)
- Construct second image with the same type

- Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)
- Construct second image with the same type
- Construct third image by shuffling items in the first image

- Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)
- Construct second image with the same type
- Construct third image by shuffling items in the first image

- Randomly choose number of items per box and item shapes, colors, sizes, and positions (without overlap)
- Construct second image with the same type
- Construct third image by shuffling items in the first image
- Construct fourth image by shuffling items in the second image

Generate two unique images and permute their items to create two other images

Sentence Writing

Write a sentence that is true about the top two images and false about the bottom two.

• Don't refer to the order of the boxes.

There is a box with 3 items of all 3 different colors.

Setup encourages set reasoning, counting, and comparisons

Sentence Writing

Validation

There is a box with 3 items of all 3 different colors.

- Higher-quality data
- Measure agreement
- Make sure sentences follow the guidelines

Fleiss' к: **0.709 → 0.808**

Validation

There is a box with 3 items of all 3 different colors.

Permutation

There is a box with 3 items of all 3 different colors.

Corpus Statistics

- 92,244 examples
- 3,962 unique sentences
- Krippendorff's a: 0.831
- Fleiss' ĸ: 0.808
 - (Landis and Koch, 1977)
- 262 words in the vocabulary
- Average sentence length of 11.2

- Four data splits
 - 80.7% training
 - 6.4% development
 - 6.4% public test
 - 6.4% unreleased test

Related Corpora

Related Corpora

Longer than VQA Similar to MS COCO

Linguistic Analysis

Analyzed 200 random development sentences.

Numerical Expressions

Negation and Coordination

Baselines

Accuracy on unreleased test set

Feature-based Analysis

- Features text and structured representation
- Use maximum entropy model

No count features

Unreleased test Dev

http://lic.nlp.cornell.edu/nlvr/

Thank you!

