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Problem and Approach Visual Goal Prediction Model

Goal: Map instructions to actions e Our model consists of goal prediction and action generation.
Common approaches- e (Given a panorama of the local surrounding, we generate probability distribution over pixels

. . | | representing the goal.
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Advantages LingUNet:
Safety and Interpretability e | anguage-conditioned image-to-image mapping.
Model can predict the goal visually before taking any actions. e Visual reasoning at multiple image scales using text-based convolutions.

Action Generation:
e Project the mode of the goal distribution to a goal location in the real world.
e (Generate actions using the agent’s pose and the goal location.

Simplifies Learning
Allows training action generation in a language agnostic manner
which makes learning easier.

Two Stage Learning
Turn left and go to the red oil drum

e Our approach enables training the
goal prediction and action l
generation using different learning
algorithms.

For each example: (2) Update the action generation using contextual bandit learning.

e \We train goal prediction using * Given the gold goal location [,, sample actions using the policy .

supervised learning and action (1) Update the goal prediction using supervised learning. * Perform sample-efficient contextual bandit update with

generation using policy gradient in » Given the gold goal pixel g, maximize its log probability. shaped reward (Agarwal et al., 2014, Misra et al., 2017).
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Two New Benchmarks

LANI: Navigation in an open space CHAI: Navigation and manipulation in a 3D Test Results LANI | CHAI Linguistically-driven
between landmarks. (28,204 instructions) house. (13,729 instructions) oo s R Analysis
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Sto 152 i 3.6 | 39.8
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"After reaching the hydrant head “‘Put the cereal, the sponge, -l.\./.l-'.?@-?.t.-?.l---?.9.1.Z------------;-----.Q.-?---;---.:.3.:.@----5---3.@:.5.3.--. coordination of sub-goals
towards the blue fence and pass and the dishwashing soap Chaplotetal. 2018 ¢ 88 i 3.6 : 39.7 and co-reference
towards the right side of the well.” into the cupboard above Our Approach . 8.4 | 3.3 : 40.0 reduced the
000 EE | ‘ ' . 1
__: i —~ the sink. SD: Stop Distance; MA: I\/Iampulatlon Accuracy  Performance.
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.......................................................... LANI ;| CHAI  withoutlanguage @ 10.65:3.22:37.53  significantly influence
No. of paragraphs . 6,000 i 1596 with joint learning . 11.54 1 2.99 : 36.90 performance (two-sided
ST S St S S t-test).
Mean instructions per 47 770 with oracle goals - 2.13 12,19 :41.07
[Go around the pillar on the right hand side] [and head paragraph _______ o _ e
fowards the boat, circling around it clockwise.] [When you Mean action per instruction i 24.6 | 54.5 Visual Goal Prediction Performance
are facing the tree, walk towards it, and the pass on the = 7orrrrrmimmmssmemssti s """"""""" 5 5
right hand side, ] [and the left hand side of the cone. Circle _'_\_/_'_?@D_F.QK?D_S___E?_?F__'D_S__TI_L_J_Q_T_'_QD__r _____ 1 2184 _______ System . LANI : CHAI
around the cone,] [and then walk past the hydrant on your Vocabulary Size . 2292 ¢ 1018 Center Pixel 120 | 3 4"

right,| [and the the tree stump.] [Circle around the stump
and then stop right behind it.]

Corpus Analysis

e Collect data using Amazon Mechanical Turk. S Count
e Workers are shown a path and write Category __LANI ; CHAI
instructions. Spatial relations (locations) 123 | 92
e Other workers control the agent to generate Conjunctions of locations ¢ 36 { 5
gold demonstration for every instruction. Coordination of sub-goals { 65 : 68
Trajectory constraints 94 0

..............................................................................................

Code, dataset and simulators available at:
https://github.com/clic-lab/ciff

Co-reference 32 : 18

200 examples manually labeled. walk over to the cabinets and open the cabinet doors up



