

Simple Recurrent Units for Highly Parallelizable Recurrence

Tao Lei tao@asapp.com

Yu Zhang ngyuzh@google.com

Sida I. Wang sidaw@cs.princeton.edu Hui Dai hd@asapp.com

Yoav Artzi yoav@cs.cornell.edu

Motivation

SRU

Recurrent networks scale poorly

- The computation of c_t is suspended until c_{t-1} becomes completely available.
- This sequential dependency breaks computation into a successive execution of relative small computation for each **c**t.
- As a result, RNNs cannot utilize the full parallelization power of hardware and runs much slower than attention and convolution.

Basic architecture

SRU involves relatively few computation, which decomposes into two sub-components:

light gated recurrence (i)

 $\mathbf{f}_t = \sigma \left(\mathbf{W}_f \mathbf{x}_t + \mathbf{v}_f \odot \mathbf{c}_{t-1} + \mathbf{b}_f \right)$ $\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + (1 - \mathbf{f}_t) \odot (\mathbf{W} \mathbf{x}_t)$

- (ii) highway connection
- $\mathbf{r}_t = \sigma \left(\mathbf{W}_r \mathbf{x}_t + \mathbf{v}_r \odot \mathbf{c}_{t-1} + \mathbf{b}_r \right)$ $\mathbf{h}_t = \mathbf{r}_t \odot \mathbf{c}_t + (1 - \mathbf{r}_t) \odot \mathbf{x}_t$

We use element-wise multiplication (e.g. $\mathbf{v}_f \odot \mathbf{c}_{t-1}$) for hidden-to-hidden connection.

Contribution

- Simple Recurrent Unit (SRU), a recurrent unit that is no longer a parallelization bottleneck.
- exhibits the same parallelism as convolution and attention.
- retrains modeling capacity as LSTM and GRU etc.

Optimizations

The architecture enables two optimizations that achieve significant speed-up over traditional RNNs: (i) group matrix multiplications across all steps into one single multiplication, and (ii) write a custom function to perform the element-wise operations for computation intensity.

cations

Computation time

SRU vs. LSTM

SRU: only 1 dimension of *c*_t is needed to compute each of f_{t+1} .

While LSTM also uses a *light gated recurrence* from **g**_t to **c**_t, it uses a full recurrence from c_t to g_{t+1} which intuitively seems wasteful.

$$g \in \{f, r, i, o\}$$
 is a gate,

full:
$$\mathbf{g}_t = \sigma(\mathbf{W}_g \mathbf{x}_t + \mathbf{V}_g | \mathbf{c}_{t-1} + \mathbf{b}_g)$$

light: $\mathbf{g}_t = \sigma(\mathbf{W}_g \mathbf{x}_t + \mathbf{v}_g \odot | \mathbf{c}_{t-1} + \mathbf{b}_g)$

Standard NN uses matrix multiplications to stack layers. SRU uses highway connections shown to be effective in ResNet/highway networks.

5.3	93.5	83.1	81.8	92.2	93.9	
.8	93.5	82.2	82.1	92.3	93.8	
.8	93.5	82.8	82.3	91.2	93.1	
R	Trec					
8.3	92.8					
8.1	92.2					
2.2	92.3					
2.8	91.2					

Comparison between the full SRU (left), the variant without element-wise hidden-to-hidden connections (middle) and the variant without highway connection on classification datasets

CR CR SUBJ SUBJ MR MR Trec Trec

4.2550

4.2146

4.**0810** 4.7163

4.5084

4.4852

tion answering

on SQuAD benchmark using DrQA (Chen et al. 2017) as the model cture. SRU exhibit 5x speed-up over LSTM and obtains better EM and res.

		Model	# layers	Size	Dev EM	Dev F1	Time per epoch RNN Total	_	
		LSTM	3	4.1m	69.5	78.8	316s 431s	_	
							113s 214s 161s 262s	_	
							58s 159s 72s 173s	_	
							100s 201s	_	
w/ SRU (5, 0.1,									
1536)									
4.3	Train-valid perplexity	72%	Valid accuracy				red wit	h Transf	ormer by
4.2		71%							
면 8.1 > 4.1		70%					Speed	Hours	
3.9	4.3	perplexity 68% 72	Base model (Valid acc 2% w/ SRU (4, 0. w/ SRU (5, 0.)	(6) curacy 1) 2)			(toks/sec)	per epoch	
3.8		67%	10/				20k	2.0	

