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Motivation SRU
Recurrent networks scale poorly Basic architecture

The computation of ¢t is suspended until ct.1 becomes SRU involves relatively few computation, which decomposes into two sub-components:
completely available. £, = o (Wixi +viOc b ;)

- - - (i) light gated recurrence t fRT Y LT R
This sequentlal dependency Ipreaks computatlor) into a ¢ = fioc+(1—f)o (Wx)
successive execution of relative small computation for
each ct. r;, = 0 (W,yx;+ v, ®ci—1 + by)

(i) highway connection
As a result, RNNs cannot utilize the full parallelization hy = r;©Oci+ (1 —1) ©x

power of hardware and runs much slower than attention

and convolution. We use element-wise multiplication (e.g. v¢ © c;—1) for hidden-to-hidden connection.

Optimizations

Contribution The architecture enables two optimizations that achieve significant speed-up over traditional
RNNs: (i) group matrix multiplications across all steps into one single multiplication, and (ii)

write a custom function to perform the element-wise operations for computation intensity.

Simple Recurrent Unit (SRU), a recurrent unit that is no

longer a parallelization bottleneck. /=32, d=256 =128, d=512
° P W coon st [ N
exhibits the same parallelism as convolution and U = W, | [x1,x2,- %) zz:i: E; II II
mmm forward
attention. W, sru | I packward
retrains modeling capacity as LSTM and GRU etc. o e o 000
Open source code: https://github.com/taolei87/sru Grouped multiplications Computation time

SRU vs. LSTM

While LSTM also uses a light gated recurrence from gtto ¢y, it uses a full
recurrence from cito gi+1 Which intuitively seems wasteful.
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| STM: all dimensions of c: is SRU: only 1 dimension of ¢t is Standard NN uses matrix multiplications to stack layers. SRU uses highway
: t . . . . .
needed to compute each of fi.1. needed to compute each of f1. connections shown to be effective in ResNet/highway networks.

Results
Ablation analysis Question answering
Successively disable components in SRU to confirm the impact of our design Tested on SQUAD benchmark using DrQA (Chen et al. 2017) as the model
choices. architecture. SRU exhibit 5x speed-up over LSTM and obtains better EM and
F1 scores.
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Comparison between the full SRU (left), the Comparison on SQUAD between the full SRU
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connections (middle) and the variant without of the architecture. ] _
highway connection on classification datasets Machine translation
Evaluated on WMT English->German dataset. Compared with Transformer by
substituting the feed-forward net with SRU.
Classification
Tested on 6 sentence classification benchmarks. SRU operates 5-9x faster Model #layers  Size g seere Speed - Hours
alid Test (toks/sec) per epoch
than cuDNN LSTM, achieving on par or better results than various baselines. Transformer (base) 6 76m  26.6402(269) 27.6402(27.9) 20k 2.0
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https://github.com/taolei87/sru

