
Tao Lei
tao@asapp.com

Motivation

Simple Recurrent Units for Highly Parallelizable Recurrence

Results

Yu Zhang
ngyuzh@google.com

Sida I. Wang
sidaw@cs.princeton.edu

Hui Dai
hd@asapp.com

Yoav Artzi
yoav@cs.cornell.edu

SRU

Recurrent networks scale poorly
• The computation of ct is suspended until ct-1 becomes

completely available.
• This sequential dependency breaks computation into a

successive execution of relative small computation for
each ct.

• As a result, RNNs cannot utilize the full parallelization
power of hardware and runs much slower than attention
and convolution.

Classification
Tested on 6 sentence classification benchmarks. SRU operates 5-9x faster
than cuDNN LSTM, achieving on par or better results than various baselines.

Contribution

Simple Recurrent Unit (SRU), a recurrent unit that is no
longer a parallelization bottleneck.
• exhibits the same parallelism as convolution and

attention.
• retrains modeling capacity as LSTM and GRU etc.

Open source code: https://github.com/taolei87/sru

3 Simple Recurrent Unit

We present and explain the design of Simple Re-
current Unit (SRU) in this section. A single layer
of SRU involves the following computation:

ft = � (Wfxt + vf � ct�1 + bf) (1)
ct = ft � ct�1 + (1� ft)� (Wxt) (2)

rt = � (Wrxt + vr � ct�1 + br) (3)
ht = rt � ct + (1� rt)� xt (4)

where W, Wf and Wr are parameter matrices
and vf , vr, bf and bv are parameter vectors to
be learnt during training. The complete architec-
ture decomposes to two sub-components: a light

recurrence (Equation 1 and 2) and a highway net-

work (Equation 3 and 4).
The light recurrence component successively

reads the input vectors xt and computes the se-
quence of states ct capturing sequential informa-
tion. The computation resembles other recurrent
networks such as LSTM, GRU and RAN (Lee
et al., 2017). Specifically, a forget gate ft controls
the information flow (Equation 1) and the state
vector ct is determined by adaptively averaging
the previous state ct�1 and the current observation
Wxt according to ft (Equation 2).

One key design decision that differs from previ-
ous gated recurrent architectures is the way ct�1

is used in the sigmoid gate. Typically, ct�1 is
multiplied with a parameter matrix to compute ft,
e.g., ft = �(Wfxt + Vfct�1 + bf). However,
the inclusion of Vfct�1 makes it difficult to par-
allelize the state computation: each dimension of
ct and ft depends on all entries of ct�1, and the
computation has to wait until ct�1 is fully com-
puted. To facilitate parallelization, our light recur-
rence component uses a point-wise multiplication
vf � ct�1 instead. With this simplification, each
dimension of the state vectors becomes indepen-
dent and hence parallelizable.

The highway network component (Srivastava
et al., 2015) facilitates gradient-based training of
deep networks. It uses the reset gate rt (Equation
3) to adaptively combine the input xt and the state
ct produced from the light recurrence (Equation
4), where (1 � rt) � xt is a skip connection that
allows the gradient to directly propagate to the pre-
vious layer. Such connections have been shown to
improve scalability (Wu et al., 2016a; Kim et al.,
2016; He et al., 2016; Zilly et al., 2017).

The combination of the two components makes
the overall architecture simple yet expressive, and
easy to scale due to enhanced parallelization and
gradient propagation.

3.1 Parallelized Implementation
Despite the parallelization friendly design of SRU,
a naive implementation which computes equations
(1)–(4) for each step t sequentially would not
achieve SRU’s full potential. We employ two op-
timizations to enhance parallelism. The optimiza-
tions are performed in the context of GPU / CUDA
programming, but the general idea can be applied
to other parallel programming models.

We re-organize the computation of equations
(1)–(4) into two major steps. First, given the input
sequence {x1 · · ·xL}, we batch the matrix multi-
plications across all time steps. This significantly
improves the computation intensity (e.g. GPU uti-
lization). The batched multiplication is:

U> =

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] ,

where L is the sequence length, U 2 RL⇥3d is
the computed matrix and d is the hidden state size.
When the input is a mini-batch of B sequences, U
would be a tensor of size (L,B, 3d).

The second step computes the remaining point-
wise operations. Specifically, we compile all
point-wise operations into a single fused CUDA
kernel and parallelize the computation across each
dimension of the hidden state. Algorithm 1 shows
the pseudo code of the forward function. The com-
plexity of this step is O(L ·B · d) per layer, where
L is the sequence length and B is the batch size. In
contrast, the complexity of LSTM is O(L ·B · d2)
because of the hidden-to-hidden multiplications
(e.g. Vht�1), and each dimension can not be in-
dependently parallelized. The fused kernel also
reduces overhead. Without it, operations such as
sigmoid activation would each invoke a separate
function call, adding kernel launching latency and
more data moving costs.

The implementation of a bidirectional SRU is
similar: the matrix multiplications of both direc-
tions are batched, and the fused kernel handles and
parallelizes both directions at the same time.

3.2 Initialization
Proper parameter initialization can reduce gradient
propagation difficulties and hence have a positive

Basic architecture
SRU involves relatively few computation, which decomposes into two sub-components:

(i) light gated recurrence

3 Simple Recurrent Unit

We present and explain the design of Simple Re-
current Unit (SRU) in this section. A single layer
of SRU involves the following computation:

ft = � (Wfxt + vf � ct�1 + bf) (1)
ct = ft � ct�1 + (1� ft)� (Wxt) (2)

rt = � (Wrxt + vr � ct�1 + br) (3)
ht = rt � ct + (1� rt)� xt (4)

where W, Wf and Wr are parameter matrices
and vf , vr, bf and bv are parameter vectors to
be learnt during training. The complete architec-
ture decomposes to two sub-components: a light

recurrence (Equation 1 and 2) and a highway net-

work (Equation 3 and 4).
The light recurrence component successively

reads the input vectors xt and computes the se-
quence of states ct capturing sequential informa-
tion. The computation resembles other recurrent
networks such as LSTM, GRU and RAN (Lee
et al., 2017). Specifically, a forget gate ft controls
the information flow (Equation 1) and the state
vector ct is determined by adaptively averaging
the previous state ct�1 and the current observation
Wxt according to ft (Equation 2).

One key design decision that differs from previ-
ous gated recurrent architectures is the way ct�1

is used in the sigmoid gate. Typically, ct�1 is
multiplied with a parameter matrix to compute ft,
e.g., ft = �(Wfxt + Vfct�1 + bf). However,
the inclusion of Vfct�1 makes it difficult to par-
allelize the state computation: each dimension of
ct and ft depends on all entries of ct�1, and the
computation has to wait until ct�1 is fully com-
puted. To facilitate parallelization, our light recur-
rence component uses a point-wise multiplication
vf � ct�1 instead. With this simplification, each
dimension of the state vectors becomes indepen-
dent and hence parallelizable.

The highway network component (Srivastava
et al., 2015) facilitates gradient-based training of
deep networks. It uses the reset gate rt (Equation
3) to adaptively combine the input xt and the state
ct produced from the light recurrence (Equation
4), where (1 � rt) � xt is a skip connection that
allows the gradient to directly propagate to the pre-
vious layer. Such connections have been shown to
improve scalability (Wu et al., 2016a; Kim et al.,
2016; He et al., 2016; Zilly et al., 2017).

The combination of the two components makes
the overall architecture simple yet expressive, and
easy to scale due to enhanced parallelization and
gradient propagation.

3.1 Parallelized Implementation
Despite the parallelization friendly design of SRU,
a naive implementation which computes equations
(1)–(4) for each step t sequentially would not
achieve SRU’s full potential. We employ two op-
timizations to enhance parallelism. The optimiza-
tions are performed in the context of GPU / CUDA
programming, but the general idea can be applied
to other parallel programming models.

We re-organize the computation of equations
(1)–(4) into two major steps. First, given the input
sequence {x1 · · ·xL}, we batch the matrix multi-
plications across all time steps. This significantly
improves the computation intensity (e.g. GPU uti-
lization). The batched multiplication is:

U> =

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] ,

where L is the sequence length, U 2 RL⇥3d is
the computed matrix and d is the hidden state size.
When the input is a mini-batch of B sequences, U
would be a tensor of size (L,B, 3d).

The second step computes the remaining point-
wise operations. Specifically, we compile all
point-wise operations into a single fused CUDA
kernel and parallelize the computation across each
dimension of the hidden state. Algorithm 1 shows
the pseudo code of the forward function. The com-
plexity of this step is O(L ·B · d) per layer, where
L is the sequence length and B is the batch size. In
contrast, the complexity of LSTM is O(L ·B · d2)
because of the hidden-to-hidden multiplications
(e.g. Vht�1), and each dimension can not be in-
dependently parallelized. The fused kernel also
reduces overhead. Without it, operations such as
sigmoid activation would each invoke a separate
function call, adding kernel launching latency and
more data moving costs.

The implementation of a bidirectional SRU is
similar: the matrix multiplications of both direc-
tions are batched, and the fused kernel handles and
parallelizes both directions at the same time.

3.2 Initialization
Proper parameter initialization can reduce gradient
propagation difficulties and hence have a positive

(ii) highway connection

Optimizations
The architecture enables two optimizations that achieve significant speed-up over traditional
RNNs: (i) group matrix multiplications across all steps into one single multiplication, and (ii)
write a custom function to perform the element-wise operations for computation intensity.

We use element-wise multiplication (e.g.) for hidden-to-hidden connection.

3 Simple Recurrent Unit

We present and explain the design of Simple Re-
current Unit (SRU) in this section. A single layer
of SRU involves the following computation:

ft = � (Wfxt + vf � ct�1 + bf) (1)
ct = ft � ct�1 + (1� ft)� (Wxt) (2)

rt = � (Wrxt + vr � ct�1 + br) (3)
ht = rt � ct + (1� rt)� xt (4)

where W, Wf and Wr are parameter matrices
and vf , vr, bf and bv are parameter vectors to
be learnt during training. The complete architec-
ture decomposes to two sub-components: a light

recurrence (Equation 1 and 2) and a highway net-

work (Equation 3 and 4).
The light recurrence component successively

reads the input vectors xt and computes the se-
quence of states ct capturing sequential informa-
tion. The computation resembles other recurrent
networks such as LSTM, GRU and RAN (Lee
et al., 2017). Specifically, a forget gate ft controls
the information flow (Equation 1) and the state
vector ct is determined by adaptively averaging
the previous state ct�1 and the current observation
Wxt according to ft (Equation 2).

One key design decision that differs from previ-
ous gated recurrent architectures is the way ct�1

is used in the sigmoid gate. Typically, ct�1 is
multiplied with a parameter matrix to compute ft,
e.g., ft = �(Wfxt + Vfct�1 + bf). However,
the inclusion of Vfct�1 makes it difficult to par-
allelize the state computation: each dimension of
ct and ft depends on all entries of ct�1, and the
computation has to wait until ct�1 is fully com-
puted. To facilitate parallelization, our light recur-
rence component uses a point-wise multiplication
vf � ct�1 instead. With this simplification, each
dimension of the state vectors becomes indepen-
dent and hence parallelizable.

The highway network component (Srivastava
et al., 2015) facilitates gradient-based training of
deep networks. It uses the reset gate rt (Equation
3) to adaptively combine the input xt and the state
ct produced from the light recurrence (Equation
4), where (1 � rt) � xt is a skip connection that
allows the gradient to directly propagate to the pre-
vious layer. Such connections have been shown to
improve scalability (Wu et al., 2016a; Kim et al.,
2016; He et al., 2016; Zilly et al., 2017).

The combination of the two components makes
the overall architecture simple yet expressive, and
easy to scale due to enhanced parallelization and
gradient propagation.

3.1 Parallelized Implementation
Despite the parallelization friendly design of SRU,
a naive implementation which computes equations
(1)–(4) for each step t sequentially would not
achieve SRU’s full potential. We employ two op-
timizations to enhance parallelism. The optimiza-
tions are performed in the context of GPU / CUDA
programming, but the general idea can be applied
to other parallel programming models.

We re-organize the computation of equations
(1)–(4) into two major steps. First, given the input
sequence {x1 · · ·xL}, we batch the matrix multi-
plications across all time steps. This significantly
improves the computation intensity (e.g. GPU uti-
lization). The batched multiplication is:

U> =

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] ,

where L is the sequence length, U 2 RL⇥3d is
the computed matrix and d is the hidden state size.
When the input is a mini-batch of B sequences, U
would be a tensor of size (L,B, 3d).

The second step computes the remaining point-
wise operations. Specifically, we compile all
point-wise operations into a single fused CUDA
kernel and parallelize the computation across each
dimension of the hidden state. Algorithm 1 shows
the pseudo code of the forward function. The com-
plexity of this step is O(L ·B · d) per layer, where
L is the sequence length and B is the batch size. In
contrast, the complexity of LSTM is O(L ·B · d2)
because of the hidden-to-hidden multiplications
(e.g. Vht�1), and each dimension can not be in-
dependently parallelized. The fused kernel also
reduces overhead. Without it, operations such as
sigmoid activation would each invoke a separate
function call, adding kernel launching latency and
more data moving costs.

The implementation of a bidirectional SRU is
similar: the matrix multiplications of both direc-
tions are batched, and the fused kernel handles and
parallelizes both directions at the same time.

3.2 Initialization
Proper parameter initialization can reduce gradient
propagation difficulties and hence have a positive

3 Simple Recurrent Unit

We present and explain the design of Simple Re-
current Unit (SRU) in this section. A single layer
of SRU involves the following computation:

ft = � (Wfxt + vf � ct�1 + bf) (1)
ct = ft � ct�1 + (1� ft)� (Wxt) (2)

rt = � (Wrxt + vr � ct�1 + br) (3)
ht = rt � ct + (1� rt)� xt (4)

where W, Wf and Wr are parameter matrices
and vf , vr, bf and bv are parameter vectors to
be learnt during training. The complete architec-
ture decomposes to two sub-components: a light

recurrence (Equation 1 and 2) and a highway net-

work (Equation 3 and 4).
The light recurrence component successively

reads the input vectors xt and computes the se-
quence of states ct capturing sequential informa-
tion. The computation resembles other recurrent
networks such as LSTM, GRU and RAN (Lee
et al., 2017). Specifically, a forget gate ft controls
the information flow (Equation 1) and the state
vector ct is determined by adaptively averaging
the previous state ct�1 and the current observation
Wxt according to ft (Equation 2).

One key design decision that differs from previ-
ous gated recurrent architectures is the way ct�1

is used in the sigmoid gate. Typically, ct�1 is
multiplied with a parameter matrix to compute ft,
e.g., ft = �(Wfxt + Vfct�1 + bf). However,
the inclusion of Vfct�1 makes it difficult to par-
allelize the state computation: each dimension of
ct and ft depends on all entries of ct�1, and the
computation has to wait until ct�1 is fully com-
puted. To facilitate parallelization, our light recur-
rence component uses a point-wise multiplication
vf � ct�1 instead. With this simplification, each
dimension of the state vectors becomes indepen-
dent and hence parallelizable.

The highway network component (Srivastava
et al., 2015) facilitates gradient-based training of
deep networks. It uses the reset gate rt (Equation
3) to adaptively combine the input xt and the state
ct produced from the light recurrence (Equation
4), where (1 � rt) � xt is a skip connection that
allows the gradient to directly propagate to the pre-
vious layer. Such connections have been shown to
improve scalability (Wu et al., 2016a; Kim et al.,
2016; He et al., 2016; Zilly et al., 2017).

The combination of the two components makes
the overall architecture simple yet expressive, and
easy to scale due to enhanced parallelization and
gradient propagation.

3.1 Parallelized Implementation
Despite the parallelization friendly design of SRU,
a naive implementation which computes equations
(1)–(4) for each step t sequentially would not
achieve SRU’s full potential. We employ two op-
timizations to enhance parallelism. The optimiza-
tions are performed in the context of GPU / CUDA
programming, but the general idea can be applied
to other parallel programming models.

We re-organize the computation of equations
(1)–(4) into two major steps. First, given the input
sequence {x1 · · ·xL}, we batch the matrix multi-
plications across all time steps. This significantly
improves the computation intensity (e.g. GPU uti-
lization). The batched multiplication is:

U> =

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] ,

where L is the sequence length, U 2 RL⇥3d is
the computed matrix and d is the hidden state size.
When the input is a mini-batch of B sequences, U
would be a tensor of size (L,B, 3d).

The second step computes the remaining point-
wise operations. Specifically, we compile all
point-wise operations into a single fused CUDA
kernel and parallelize the computation across each
dimension of the hidden state. Algorithm 1 shows
the pseudo code of the forward function. The com-
plexity of this step is O(L ·B · d) per layer, where
L is the sequence length and B is the batch size. In
contrast, the complexity of LSTM is O(L ·B · d2)
because of the hidden-to-hidden multiplications
(e.g. Vht�1), and each dimension can not be in-
dependently parallelized. The fused kernel also
reduces overhead. Without it, operations such as
sigmoid activation would each invoke a separate
function call, adding kernel launching latency and
more data moving costs.

The implementation of a bidirectional SRU is
similar: the matrix multiplications of both direc-
tions are batched, and the fused kernel handles and
parallelizes both directions at the same time.

3.2 Initialization
Proper parameter initialization can reduce gradient
propagation difficulties and hence have a positive

Grouped multiplications Computation time

Model Size CR SUBJ MR TREC MPQA SST Time

Best reported results:
Wang and Manning (2013) 82.1 93.6 79.1 - 86.3 - -
Kalchbrenner et al. (2014) - - - 93.0 - 86.8 -
Kim (2014) 85.0 93.4 81.5 93.6 89.6 88.1 -
Zhang and Wallace (2017) 84.7 93.7 81.7 91.6 89.6 85.5 -
Zhao et al. (2015) 86.3 95.5 83.1 92.4 93.3 - -

Our setup (default Adam, fixed word embeddings):
CNN 360k 83.1±1.6 92.7±0.9 78.9±1.3 93.2±0.8 89.2±0.8 85.1±0.6 417
LSTM 352k 82.7±1.9 92.6±0.8 79.8±1.3 93.4±0.9 89.4±0.7 88.1±0.8 2409
QRNN (k=1) 165k 83.5±1.9 93.4±0.6 82.0±1.0 92.5±0.5 90.2±0.7 88.2±0.4 345
QRNN (k=1) + highway 204k 84.0±1.9 93.4±0.8 82.1±1.2 93.2±0.6 89.6±1.2 88.9±0.2 371

SRU (2 layers) 204k 84.9±1.6 93.5±0.6 82.3±1.2 94.0±0.5 90.1±0.7 89.2±0.3 320
SRU (4 layers) 303k 85.9±1.5 93.8±0.6 82.9±1.0 94.8±0.5 90.1±0.6 89.6±0.5 510
SRU (8 layers) 502k 86.4±1.7 93.7±0.6 83.1±1.0 94.7±0.5 90.2±0.8 88.9±0.6 879

Table 1: Test accuracies on classification benchmarks (Section 4.1). The first block presents best reported
results of various methods. The second block compares SRU and other baselines given the same setup.
For the SST dataset, we report average results of 5 runs. For other datasets, we perform 3 independent
trials of 10-fold cross validation (3⇥10 runs). The last column compares the wall clock time (in seconds)
to finish 100 epochs on the SST dataset.

other architectures. We stack multiple layers of
SRU to directly substitute other recurrent, convo-
lutional or feed-forward modules. We minimize
hyper-parameter tuning and architecture engineer-
ing for a fair comparison. Such efforts have a non-
trivial impact on the results, which are beyond the
scope of our experiments. Unless noted otherwise,
the hyperparameters are set identical to prior work.

4.1 Text Classification
Dataset We use six sentence classification
benchmarks: movie review sentiment (MR; Pang
and Lee, 2005), sentence subjectivity (SUBJ;
Pang and Lee, 2004), customer reviews polar-
ity (CR; Hu and Liu, 2004), question type (TREC;
Li and Roth, 2002), opinion polarity (MPQA;
Wiebe et al., 2005), and the Stanford sentiment
treebank (SST; Socher et al., 2013).2

Following Kim (2014), we use word2vec em-
beddings trained on 100 billion Google News to-
kens. For simplicity, all word vectors are normal-
ized to unit vectors and are fixed during training.

Setup We stack multiple SRU layers and use
the last output state to predict the class label for
a given sentence. We train for 100 epochs and
use the validation (i.e., development) set to se-
lect the best training epoch. We perform 10-fold

2We use the binary version of SST dataset.

cross validation for datasets that do not have a
standard train-evaluation split. The result on SST
is averaged over five independent trials. We use
Adam (Kingma and Ba, 2014) with the default
learning rate 0.001, a weight decay 0 and a hid-
den dimension of 128.

We compare SRU with a wide range of meth-
ods on these datasets, including various convo-
lutional models (Kalchbrenner et al., 2014; Kim,
2014; Zhang and Wallace, 2017) and a hierarchical
sentence model (Zhao et al., 2015) reported as the
state of the art on these datasets (Conneau et al.,
2017). Their setups are not exactly the same as
ours, and may involve more tuning on word em-
beddings and other regularizations. We use the
setup of Kim (2014) but do not fine-tune word
embeddings and the learning method for simplic-
ity. In addition, we directly compare against
three baselines trained using our code base: a re-
implementation of the CNN model of Kim (2014),
a two-layer LSTM model and Quasi-RNN (Brad-
bury et al., 2017). We use the official implemen-
tation of Quasi-RNN and also implement a ver-
sion with highway connection for a fair compar-
ison. These baselines are trained using the same
hyper-parameter configuration as SRU.

Results Table 1 compares the test results on the
six benchmarks. We select the best number re-

Question answering
Tested on SQuAD benchmark using DrQA (Chen et al. 2017) as the model
architecture. SRU exhibit 5x speed-up over LSTM and obtains better EM and
F1 scores.

Model # layers Size Dev Dev Time per epoch
EM F1 RNN Total

LSTM 3 4.1m 69.5 78.8 316s 431s(Chen et al., 2017)

QRNN (k=1) + highway 4 2.4m 70.1± 0.1 79.4± 0.1 113s 214s
6 3.2m 70.6± 0.1 79.6± 0.2 161s 262s

SRU 3 2.0m 70.2± 0.3 79.3± 0.1 58s 159s
SRU 4 2.4m 70.7± 0.1 79.7± 0.1 72s 173s
SRU 6 3.2m 71.4± 0.1 80.2± 0.1 100s 201s

Table 2: Exact match (EM) and F1 scores of various models on SQuAD (Section 4.2). We also report
the total processing time per epoch and the time spent in RNN computations. SRU outperforms other
models, and is more than five times faster than cuDNN LSTM.

tions in SRU achieves better GPU utilization.

4.3 Machine Translation
Dataset We train translation models on the
WMT English!German dataset, a standard
benchmark for translation systems (Peitz et al.,
2014; Li et al., 2014; Jean et al., 2015). The
dataset consists of 4.5 million sentence pairs. We
obtain the pre-tokenized dataset from the Open-
NMT project (Klein et al., 2017). The sentences
were tokenized using the word-piece model (Wu
et al., 2016b), which generates a shared vocabu-
lary of about 32,000 tokens. Newstest-2014 and
newstest-2017 are provided and used as the vali-
dation and test sets.5

Setup We use the state-of-the-art Transformer
model of Vaswani et al. (2017) as our base archi-
tecture. In the base model, a single Transformer
consists of a multi-head attention layer and a bot-
tleneck feed-forward layer. We substitute the feed-
forward network using our SRU implementation:

base: W · ReLU_layer(x) + b

ours: W · SRU_layer(x) + b .

The intuition is that SRU can better capture se-
quential information as a recurrent network, and
potentially achieve better performance while re-
quiring fewer layers.

We keep the model configuration the same as
Vaswani et al. (2017): the model dimension is
dmodel = 512, the feed-forward and SRU layer has
inner dimensionality dff = dsru = 2048, and posi-
tional encoding (Gehring et al., 2017) is applied on

5
https://github.com/OpenNMT/

OpenNMT-tf/tree/master/scripts/wmt

the input word embeddings. The base model with-
out SRU has 6 layers, while we set the number of
layers to 4 and 5 when SRU is added. Following
the original setup, we use a dropout probability 0.1
for all components, except the SRU in the 5-layer
model, for which we use a dropout of 0.2 as we
observe stronger over-fitting in training.

We use a single NVIDIA Tesla V100 GPU for
each model. The published results were obtained
using 8 GPUs in parallel, which provide a large ef-
fective batch size during training. To approximate
the setup, we update the model parameters ev-
ery 5⇥5120 tokens and use 16,000 warm-up steps
following OpenNMT suggestions. We train each
model for 40 epochs (250,000 steps), and perform
3 independent trials for each model configuration.
A single run takes about 3.5 days with a Tesla
V100 GPU.

Results Table 3 shows the translation results.
When SRU is incorporated into the architecture,
both the 4-layer and 5-layer model outperform the
Transformer base model. For instance, our 5-
layer model obtains an average improvement of
0.7 test BLEU score and an improvement of 0.5
BLEU score by comparing the best results of each
model achieved across three runs. SRU also ex-
hibits more stable performance, with smaller vari-
ance over 3 runs. Figure 4 further compares the
validation accuracy of different models. These re-
sults confirm that SRU is better at sequence mod-
eling compared to the original feed-forward net-
work (FFN), requiring fewer layers to achieve sim-
ilar accuracy. Finally, adding SRU does not affect
the parallelization or speed of Transformer – the
4-layer model exhibits 10% speed improvement,

Ablation analysis
Successively disable components in SRU to confirm the impact of our design
choices.

Model Size # layers Unroll size Valid Test Time

Best reported results:
MI-LSTM (Wu et al., 2016c) 17m 1 100 - 1.44 -
HM-LSTM (Chung et al., 2016) 35m 3 100 - 1.32 -
LSTM (Melis et al., 2017) 46m 4 50 1.28 1.30 -
RHN (Zilly et al., 2017) 46m 10 50 - 1.27 -
FS-LSTM (Mujika et al., 2017) 47m 4 100 - 1.25 -
QRNN (Merity et al., 2018) 26m 4 200 - 1.33 -
LSTM (Merity et al., 2018) 47m 3 200 - 1.23 -

Our setup:
LSTM 37m 3 100 1.37 1.39 42min
LSTM 37m 6 100 1.35 1.38 48min
QRNN (k=1) 37m 6 100 1.36 1.38 30min
SRU 37m 6 100 1.29 1.30 28min
SRU 37m 10 100 1.26 1.27 29min
SRU (with projection) 37m 6 100 1.25 1.26 29min
SRU (with projection) 47m 8 100 1.21 1.21 39min
SRU (with projection) 49m 12 256 1.19 1.19 41min

Table 4: Validation and test BPCs of different recurrent models on Enwik8 dataset. The last column
presents the training time per epoch. For SRU with projection, we set the projection dimension to 512.

Model 4 layers 6 layers

SRU (full) 70.7 71.4
� remove v � ct�1 70.6 71.1
� remove ↵-scaling 70.3 71.0
� remove highway 69.4 69.1

Table 5: Ablation analysis on SQuAD. Compo-
nents are successively removed and the EM scores
are averaged over 4 runs.

Table 1

CR CR SUBJ SUBJ MR MR Trec Trec MPQA MPQA

Full (v2) 85.284 84.874 95.389 93.533 83.257 82.301 92.823 94.033 90.14659 90.05592667

- scaling , - c[t-1] 86.78 84.106 94.763 93.473 82.240 82.061 92.284 93.807 91.501 89.732

- highway 85.863 84.115 94.756 93.497 82.771 82.314 91.165 93.093 91.354 90.087

- c[t-1] 0.8490.8360.9530.9350.8310.8180.9220.939
84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

CR CR SUBJ SUBJ MR MR Trec Trec

Full (v2) 85.3 84.9 95.4 93.5 83.3 82.3 92.8 94.0

- c[t-1] 84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

- scaling 86.8 84.1 94.8 93.5 82.2 82.1 92.3 93.8

- highway 85.9 84.1 94.8 93.5 82.8 82.3 91.2 93.1

CR SUBJ MR Trec

Full (v2) 85.3 95.4 83.3 92.8

- c[t-1] 84.9 95.3 83.1 92.2

- scaling 86.8 94.8 82.2 92.3

- highway 85.9 94.8 82.8 91.2

CR CR SUBJ SUBJ MR MR Trec Trec

CR CR SUBJ SUBJ MR MR Trec Trec

CR CR SUBJ SUBJ MR MR Trec Trec

CR SUBJ MR Trec

91.2

82.8

94.8

85.9

92.2

83.1

95.3

84.9

92.8

83.3

95.4

85.3

�1

Figure 5: Ablation analysis on the classification
datasets. Average validation results are presented.
We compare the full SRU implementation (left
blue), the variant without v � ct�1 multiplication
(middle green) and the variant without highway
connection (right yellow).

confirm the effectiveness of SRU on multiple nat-
ural language tasks ranging from classification to
translation. We open source our implementation to
facilitate future NLP and deep learning research.

Trading capacity with layers SRU achieves
high parallelization by simplifying the hidden-to-
hidden dependency. This simplification is likely to
reduce the representational power of a single layer
and hence should be balanced to avoid perfor-
mance loss. However, unlike previous work that
suggests additional computation (e.g., n-gram fil-
ters) within the layer (Balduzzi and Ghifary, 2016;
Bradbury et al., 2017), we argue that increasing
the depth of the model suffices to retain modeling
capacity. Our empirical results on various tasks
confirm this hypothesis.

Acknowledgement

We thank Alexander Rush and Yoon Kim for
help with machine translation experiments, and
Danqi Chen for help with SQuAD experiments.
We thank Adam Yala, Howard Chen, Jeremy
Wohlwend, Lili Yu, Kyle Swanson and Kevin
Yang for providing useful feedback on the paper
and the SRU implementation. A special thanks to
Hugh Perkins for his support on the experimental
environment setup and Runqi Yang for answering
questions about his code.

Model Size # layers Unroll size Valid Test Time

Best reported results:
MI-LSTM (Wu et al., 2016c) 17m 1 100 - 1.44 -
HM-LSTM (Chung et al., 2016) 35m 3 100 - 1.32 -
LSTM (Melis et al., 2017) 46m 4 50 1.28 1.30 -
RHN (Zilly et al., 2017) 46m 10 50 - 1.27 -
FS-LSTM (Mujika et al., 2017) 47m 4 100 - 1.25 -
QRNN (Merity et al., 2018) 26m 4 200 - 1.33 -
LSTM (Merity et al., 2018) 47m 3 200 - 1.23 -

Our setup:
LSTM 37m 3 100 1.37 1.39 42min
LSTM 37m 6 100 1.35 1.38 48min
QRNN (k=1) 37m 6 100 1.36 1.38 30min
SRU 37m 6 100 1.29 1.30 28min
SRU 37m 10 100 1.26 1.27 29min
SRU (with projection) 37m 6 100 1.25 1.26 29min
SRU (with projection) 47m 8 100 1.21 1.21 39min
SRU (with projection) 49m 12 256 1.19 1.19 41min

Table 4: Validation and test BPCs of different recurrent models on Enwik8 dataset. The last column
presents the training time per epoch. For SRU with projection, we set the projection dimension to 512.

Model 4 layers 6 layers

SRU (full) 70.7 71.4
� remove v � ct�1 70.6 71.1
� remove ↵-scaling 70.3 71.0
� remove highway 69.4 69.1

Table 5: Ablation analysis on SQuAD. Compo-
nents are successively removed and the EM scores
are averaged over 4 runs.

Table 1

CR CR SUBJ SUBJ MR MR Trec Trec MPQA MPQA

Full (v2) 85.284 84.874 95.389 93.533 83.257 82.301 92.823 94.033 90.14659 90.05592667

- scaling , - c[t-1] 86.78 84.106 94.763 93.473 82.240 82.061 92.284 93.807 91.501 89.732

- highway 85.863 84.115 94.756 93.497 82.771 82.314 91.165 93.093 91.354 90.087

- c[t-1] 0.8490.8360.9530.9350.8310.8180.9220.939
84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

CR CR SUBJ SUBJ MR MR Trec Trec

Full (v2) 85.3 84.9 95.4 93.5 83.3 82.3 92.8 94.0

- c[t-1] 84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

- scaling 86.8 84.1 94.8 93.5 82.2 82.1 92.3 93.8

- highway 85.9 84.1 94.8 93.5 82.8 82.3 91.2 93.1

CR SUBJ MR Trec

Full (v2) 85.3 95.4 83.3 92.8

- c[t-1] 84.9 95.3 83.1 92.2

- scaling 86.8 94.8 82.2 92.3

- highway 85.9 94.8 82.8 91.2

CR CR SUBJ SUBJ MR MR Trec Trec

CR CR SUBJ SUBJ MR MR Trec Trec

CR CR SUBJ SUBJ MR MR Trec Trec

CR SUBJ MR Trec

�1

Figure 5: Ablation analysis on the classification
datasets. Average validation results are presented.
We compare the full SRU implementation (left
blue), the variant without v � ct�1 multiplication
(middle green) and the variant without highway
connection (right yellow).

confirm the effectiveness of SRU on multiple nat-
ural language tasks ranging from classification to
translation. We open source our implementation to
facilitate future NLP and deep learning research.

Trading capacity with layers SRU achieves
high parallelization by simplifying the hidden-to-
hidden dependency. This simplification is likely to
reduce the representational power of a single layer
and hence should be balanced to avoid perfor-
mance loss. However, unlike previous work that
suggests additional computation (e.g., n-gram fil-
ters) within the layer (Balduzzi and Ghifary, 2016;
Bradbury et al., 2017), we argue that increasing
the depth of the model suffices to retain modeling
capacity. Our empirical results on various tasks
confirm this hypothesis.

Acknowledgement

We thank Alexander Rush and Yoon Kim for
help with machine translation experiments, and
Danqi Chen for help with SQuAD experiments.
We thank Adam Yala, Howard Chen, Jeremy
Wohlwend, Lili Yu, Kyle Swanson and Kevin
Yang for providing useful feedback on the paper
and the SRU implementation. A special thanks to
Hugh Perkins for his support on the experimental
environment setup and Runqi Yang for answering
questions about his code.

Comparison between the full SRU (left), the
variant without element-wise hidden-to-hidden
connections (middle) and the variant without
highway connection on classification datasets

Comparison on SQuAD between the full SRU
and variants by successively removing parts
of the architecture.

Machine translation
Evaluated on WMT English->German dataset. Compared with Transformer by
substituting the feed-forward net with SRU.

Model # layers Size BLEU score Speed Hours
Valid Test (toks/sec) per epoch

Transformer (base) 6 76m 26.6±0.2 (26.9) 27.6±0.2 (27.9) 20k 2.0
Transformer (+SRU) 4 79m 26.7±0.1 (26.8) 27.8±0.1 (28.3) 22k 1.8
Transformer (+SRU) 5 90m 27.1±0.0 (27.2) 28.3±0.1 (28.4) 19k 2.1

Table 3: English!German translation results (Section 4.3). We perform 3 independent runs for each
configuration. We select the best epoch based on the valid BLEU score for each run, and report the
average results and the standard deviation over 3 runs. In addition, we experiment with averaging model
checkpoints and use the averaged version for evaluation, following (Vaswani et al., 2017). We show the
best BLEU results achieved in brackets.

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Table 1

Base model (6) w/ SRU (5, 0.2) w/ SRU (4, 0.1) w/ SRU (5, 0.1,
1536)

8.8449 6.9806

6.8904 5.7221

6.0114 5.1309

5.5672 4.8197

5.3095 4.6361

5.1364 4.5104

5.0100 4.4275

4.9129 4.3571

4.8346 4.2995

4.7704 4.2550

4.7163 4.2146

4.6698 4.1893

4.6295 4.1635

4.5939 4.1360

4.5623 4.1260

4.5339 4.1007

4.5084 4.0810

4.4852 4.0714

4.4638 4.0579

4.4443 4.0455

4.4261 4.0365

4.4094 4.0272

4.3939 4.0191

4.3791 4.0091

4.3656 4.0035

4.3527 3.9950

4.3406 3.9850

4.3293 3.9784

4.3188 3.9771

4.3085 3.9825

4.2989 3.9752

4.2896 3.9656

4.2809 3.9641

4.2726 3.9540

4.2645 3.9517

4.2568 3.9482

4.2495 3.9456

4.2423 3.9421

4.2357 3.9353

8.0749 6.4272

6.4581 5.4060

5.6984 4.8829

5.2985 4.6175

5.0637 4.4721

4.9053 4.3722

4.7891 4.2944

4.6997 4.2504

4.6281 4.2073

4.5686 4.1802

4.5186 4.1461

4.4760 4.1203

4.4386 4.0945

4.4060 4.0821

4.3768 4.0678

4.3508 4.0517

4.3272 4.0476

4.3056 4.0331

4.2861 4.0280

4.2681 4.0205

4.2512 4.0098

4.2359 4.0094

4.2216 4.0000

4.2080 3.9928

4.1957 3.9873

4.1839 3.9876

67%

68%

70%

71%

72%

1 10 20 30 40

Base model (6)
w/ SRU (4, 0.1)
w/ SRU (5, 0.2)

Train PPL

Va
lid

Train-valid perplexity Valid accuracy

Epoch

67%

68%

70%

71%

72%

1 10 20 30 40

Base model
w/ SRU (4 layer)
w/ SRU (5 layer)

Valid accuracy

Epoch

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Base model
w/ SRU (5 layer)
w/ SRU (4 layer)

Train-valid perplexity

Va
lid

Train PPL

�1

Figure 4: Mean validation accuracy (y-axis) of dif-
ferent translation models after each training epoch
(x-axis).

while the 5-layer model is only 5% slower com-
pared to the base model. We present more results
and discussion in Appendix B.3.

4.4 Character-level Language Modeling

Dataset We use Enwik8, a large dataset for
character-level language modeling. Following
standard practice, we use the first 90M characters
for training and the remaining 10M split evenly for
validation and test.

Setup Similar to previous work, we use a batch
size of 128 and an unroll size of 100 for trun-
cated backpropagation during training. We also
experiment with an unroll size of 256 and a batch
size of 64 such that each training instance has
longer context. We use a non-zero highway bias
br = �3 that is shown useful for training lan-
guage model (Zilly et al., 2017). Previous meth-
ods employ different optimizers and learning rate
schedulers for training. For simplicity and consis-
tency, we use the Adam optimizer and the same
learning rate scheduling (i.e., Noam scheduling)
as the translation experiments. We train a maxi-
mum of 100 epochs (about 700,000 steps).

We compare various recurrent models and use
a parameter budget similar to previous methods.
In addition, we experiment with the factorization
trick (Kuchaiev and Ginsburg, 2017) to reduce the
total number of parameters without decreasing the
performance. See details in Appendix B.

Results Table 4 presents the results of SRU
and other recurrent models. The 8-layer SRU
model achieves validation and test bits per char-
acter (BPC) of 1.21, outperforming previous best
reported results of LSTM, QRNN and recurrent
highway networks (RHN). Increasing the layer of
SRU to 12 and using a longer context of 256 char-
acters in training further improves the BPC to 1.19

4.5 Ablation Analysis
We perform ablation analyses on SRU by succes-
sively disabling different components:

(1) Remove the point-wise multiplication term
v � ct�1 in the forget and reset gates. The
resulting variant involves less recurrence and
has less representational capacity.

(2) Disable the scaling correction by setting the
constant ↵ = 1.

(3) Remove the skip connections.

We train model variants on the classification and
question answering datasets. Table 5 and Figure 5
confirm the impact of our design decisions – re-
moving these components result in worse classifi-
cation accuracies and exact match scores.

5 Discussion

This work presents Simple Recurrent Unit (SRU),
a scalable recurrent architecture that operates as
fast as feed-forward and convolutional units. We

Model # layers Size BLEU score Speed Hours
Valid Test (toks/sec) per epoch

Transformer (base) 6 76m 26.6±0.2 (26.9) 27.6±0.2 (27.9) 20k 2.0
Transformer (+SRU) 4 79m 26.7±0.1 (26.8) 27.8±0.1 (28.3) 22k 1.8
Transformer (+SRU) 5 90m 27.1±0.0 (27.2) 28.3±0.1 (28.4) 19k 2.1

Table 3: English!German translation results (Section 4.3). We perform 3 independent runs for each
configuration. We select the best epoch based on the valid BLEU score for each run, and report the
average results and the standard deviation over 3 runs. In addition, we experiment with averaging model
checkpoints and use the averaged version for evaluation, following (Vaswani et al., 2017). We show the
best BLEU results achieved in brackets.

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Table 1

Base model (6) w/ SRU (5, 0.2) w/ SRU (4, 0.1) w/ SRU (5, 0.1,
1536)

8.8449 6.9806

6.8904 5.7221

6.0114 5.1309

5.5672 4.8197

5.3095 4.6361

5.1364 4.5104

5.0100 4.4275

4.9129 4.3571

4.8346 4.2995

4.7704 4.2550

4.7163 4.2146

4.6698 4.1893

4.6295 4.1635

4.5939 4.1360

4.5623 4.1260

4.5339 4.1007

4.5084 4.0810

4.4852 4.0714

4.4638 4.0579

4.4443 4.0455

4.4261 4.0365

4.4094 4.0272

4.3939 4.0191

4.3791 4.0091

4.3656 4.0035

4.3527 3.9950

4.3406 3.9850

4.3293 3.9784

4.3188 3.9771

4.3085 3.9825

4.2989 3.9752

4.2896 3.9656

4.2809 3.9641

4.2726 3.9540

4.2645 3.9517

4.2568 3.9482

4.2495 3.9456

4.2423 3.9421

4.2357 3.9353

8.0749 6.4272

6.4581 5.4060

5.6984 4.8829

5.2985 4.6175

5.0637 4.4721

4.9053 4.3722

4.7891 4.2944

4.6997 4.2504

4.6281 4.2073

4.5686 4.1802

4.5186 4.1461

4.4760 4.1203

4.4386 4.0945

4.4060 4.0821

4.3768 4.0678

4.3508 4.0517

4.3272 4.0476

4.3056 4.0331

4.2861 4.0280

4.2681 4.0205

4.2512 4.0098

4.2359 4.0094

4.2216 4.0000

4.2080 3.9928

4.1957 3.9873

4.1839 3.9876

67%

68%

70%

71%

72%

1 10 20 30 40

Base model (6)
w/ SRU (4, 0.1)
w/ SRU (5, 0.2)

Train PPL

Va
lid

Train-valid perplexity Valid accuracy

Epoch

67%

68%

70%

71%

72%

1 10 20 30 40

Base model
w/ SRU (4 layer)
w/ SRU (5 layer)

Valid accuracy

Epoch

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Base model
w/ SRU (5 layer)
w/ SRU (4 layer)

Train-valid perplexity

Va
lid

Train PPL

�1

Figure 4: Mean validation accuracy (y-axis) of dif-
ferent translation models after each training epoch
(x-axis).

while the 5-layer model is only 5% slower com-
pared to the base model. We present more results
and discussion in Appendix B.3.

4.4 Character-level Language Modeling

Dataset We use Enwik8, a large dataset for
character-level language modeling. Following
standard practice, we use the first 90M characters
for training and the remaining 10M split evenly for
validation and test.

Setup Similar to previous work, we use a batch
size of 128 and an unroll size of 100 for trun-
cated backpropagation during training. We also
experiment with an unroll size of 256 and a batch
size of 64 such that each training instance has
longer context. We use a non-zero highway bias
br = �3 that is shown useful for training lan-
guage model (Zilly et al., 2017). Previous meth-
ods employ different optimizers and learning rate
schedulers for training. For simplicity and consis-
tency, we use the Adam optimizer and the same
learning rate scheduling (i.e., Noam scheduling)
as the translation experiments. We train a maxi-
mum of 100 epochs (about 700,000 steps).

We compare various recurrent models and use
a parameter budget similar to previous methods.
In addition, we experiment with the factorization
trick (Kuchaiev and Ginsburg, 2017) to reduce the
total number of parameters without decreasing the
performance. See details in Appendix B.

Results Table 4 presents the results of SRU
and other recurrent models. The 8-layer SRU
model achieves validation and test bits per char-
acter (BPC) of 1.21, outperforming previous best
reported results of LSTM, QRNN and recurrent
highway networks (RHN). Increasing the layer of
SRU to 12 and using a longer context of 256 char-
acters in training further improves the BPC to 1.19

4.5 Ablation Analysis
We perform ablation analyses on SRU by succes-
sively disabling different components:

(1) Remove the point-wise multiplication term
v � ct�1 in the forget and reset gates. The
resulting variant involves less recurrence and
has less representational capacity.

(2) Disable the scaling correction by setting the
constant ↵ = 1.

(3) Remove the skip connections.

We train model variants on the classification and
question answering datasets. Table 5 and Figure 5
confirm the impact of our design decisions – re-
moving these components result in worse classifi-
cation accuracies and exact match scores.

5 Discussion

This work presents Simple Recurrent Unit (SRU),
a scalable recurrent architecture that operates as
fast as feed-forward and convolutional units. We

Epoch Transformer base w/ SRU (4 layer) w/ SRU (5 layer)
Valid Test Valid Test Valid Test

20 26.1 27.3 26.2 27.6 26.6 27.9
21 26.2 27.3 26.3 27.7 26.6 28.1
22 26.1 27.4 26.3 27.8 26.7 28.0
23 26.2 27.4 26.4 27.7 26.8 28.1
24 26.2 27.4 26.4 27.8 26.7 28.0
25 26.3 27.4 26.4 27.7 26.6 28.1
26 26.5 27.5 26.5 27.7 26.7 28.1
27 26.4 27.6 26.4 27.6 26.8 28.1
28 26.4 27.6 26.4 27.7 26.7 28.2
29 26.4 27.5 26.4 27.8 26.8 28.2
30 26.5 27.7 26.4 27.8 26.9 28.1
31 26.4 27.6 26.6 27.7 26.9 28.3
32 26.5 27.5 26.5 27.8 26.9 28.3
33 26.5 27.5 26.5 27.8 27.1 28.3
34 26.4 27.6 26.5 27.9 26.9 28.2
35 26.4 27.6 26.5 27.9 26.9 28.2
36 26.5 27.6 26.5 27.8 26.9 28.3
37 26.5 27.5 26.5 27.8 26.9 28.2
38 26.5 27.6 26.5 28.0 27.0 28.2
39 26.5 27.6 26.7 27.8 27.0 28.2
40 26.6 27.6 26.6 27.9 27.0 28.2

Table 7: Average BLEU scores after each epoch.

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Table 1

Base model (6) w/ SRU (5, 0.2) w/ SRU (4, 0.1) w/ SRU (5, 0.1,
1536)

8.8449 6.9806

6.8904 5.7221

6.0114 5.1309

5.5672 4.8197

5.3095 4.6361

5.1364 4.5104

5.0100 4.4275

4.9129 4.3571

4.8346 4.2995

4.7704 4.2550

4.7163 4.2146

4.6698 4.1893

4.6295 4.1635

4.5939 4.1360

4.5623 4.1260

4.5339 4.1007

4.5084 4.0810

4.4852 4.0714

4.4638 4.0579

4.4443 4.0455

4.4261 4.0365

4.4094 4.0272

4.3939 4.0191

4.3791 4.0091

4.3656 4.0035

4.3527 3.9950

4.3406 3.9850

4.3293 3.9784

4.3188 3.9771

4.3085 3.9825

4.2989 3.9752

4.2896 3.9656

4.2809 3.9641

4.2726 3.9540

4.2645 3.9517

4.2568 3.9482

4.2495 3.9456

4.2423 3.9421

4.2357 3.9353

8.0749 6.4272

6.4581 5.4060

5.6984 4.8829

5.2985 4.6175

5.0637 4.4721

4.9053 4.3722

4.7891 4.2944

4.6997 4.2504

4.6281 4.2073

4.5686 4.1802

4.5186 4.1461

4.4760 4.1203

4.4386 4.0945

4.4060 4.0821

4.3768 4.0678

4.3508 4.0517

4.3272 4.0476

4.3056 4.0331

4.2861 4.0280

4.2681 4.0205

4.2512 4.0098

4.2359 4.0094

4.2216 4.0000

4.2080 3.9928

4.1957 3.9873

4.1839 3.9876

67%

68%

70%

71%

72%

1 10 20 30 40

Base model (6)
w/ SRU (4, 0.1)
w/ SRU (5, 0.2)

Train PPL

Va
lid

Train-valid perplexity Valid accuracy

Epoch

67%

68%

70%

71%

72%

1 10 20 30 40

Base model
w/ SRU (4 layer)
w/ SRU (5 layer)

Valid accuracy

Epoch

3.8

3.9

4.1

4.2

4.3

4.0 4.3 4.5 4.8 5.0

Base model
w/ SRU (5 layer)
w/ SRU (4 layer)

Train-valid perplexity

Va
lid

Train PPL

�1

Figure 7: Training and validation perplexity curves
of the base model and two SRU models.

Table 7 shows the averaged BLEU score of each
model from 20th to 40th epoch. The improve-
ment over the Transformer base model is consis-
tent across different epochs.

Figure 7 plots the training and validation per-
plexity of three models. With a higher dropout
(0.2) used for the SRU, the 5-layer model gets con-
sistent lower validation perplexity over the base
model and the 4-layer model. We also see that
models with SRU exhibit much faster training
progress with much lower training perplexity, sug-
gesting the models could be tuned better with fur-
ther training regularization.

B.4 Character-level Language Modeling
We train all models using a weight decay of 10�7

and a gradient clipping of 0.3. We set the learn-
ing rate factor of Noam scheduling to 3 and the
warmup steps to 32, 000. We tune the dropout
probability from {0.2, 0.3}.

The projection (bottleneck) trick is imple-
mented as follows. Recall that the batched mul-
tiplication of SRU is computed as

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] .

The stacked parameter matrices on the left is re-
parameterized by a low-rank factorization,

0

@
W
Wf

Wr

1

A = P>Q ,

where Q 2 Rdin⇥d0 and P 2 R3dout⇥d0 are two
new parameter matrices to be learned, and d

0 is the
projection dimension that is much smaller than the
input and output dimension of the SRU.

LSTM: all dimensions of ct is
needed to compute each of ft+1.

SRU: only 1 dimension of ct is
needed to compute each of ft+1.

While LSTM also uses a light gated recurrence from gt to ct, it uses a full
recurrence from ct to gt+1 which intuitively seems wasteful.

Standard NN uses matrix multiplications to stack layers. SRU uses highway
connections shown to be effective in ResNet/highway networks.

gt = �(Wgxt +Vg ct�1 + bg)

gt = �(Wgxt + vg � ct�1 + bg)
g 2 {f, r, i, o} is a gate, full:

light:

SRU vs. LSTM

https://github.com/taolei87/sru

