Continual Learning for Grounded Language Generation by Observing Human Following Behavior

Noriyuki Kojima, Alane Suhr, and Yoav Artzi

EMNLP 2021 (TACL paper)

Task

Learning a grounded instruction generation system

f(world state, system intent) = instruction

Learning Instruction Generation From Human Behavior

Learning Instruction Generation From Human Behavior

Learning Overview

Continual Generation Learning in CerealBar

CerealBar is a situated collaborative game with sequential natural language instruction

- Two agents collaborating in an environment
- Goal: collecting card sets together
- Uni-directional natural language instruction
- System as a leader, human user as a follower

turn right and go straight, past the lake and collect the three blue circle card.

Generating Instructions in CerealBar

- Input: game state
- Output: instruction describing the follower's moves and target cards
- Which cards to select?
 - → deterministic planner

Turn right and go straight, past the lake and collect the three blue circle card.

Interaction Data

For each user execution of a generated instruction:

Reward Computation

For each user execution of a generated instruction:

- Compare the system's plan to the user execution
- If they diverge, the instruction is not a good representation of the plan
- But, could still be a good representation of user execution

Reward Computation

For each user execution of a generated instruction:

Training Data

Each training example includes:

- A contextual bandit scenario
- State and pose sequence are contexts to generate the instruction, which gets a reward

Training Objective

- Objective: maximize the reward
- Gradient is:

$$\nabla \mathcal{L} = y \nabla P(\bar{x} \mid s, \bar{\rho})$$
 _____Pose seq. ____State

- Positive examples behave exactly like supervised learning
- Negative examples? $\lim_{P(\cdot)\to 0} \log P(\cdot) = -\infty$

Training Objective

- Objective: maximize the reward + IPS for negative examples
- Gradient is:

$$\nabla \mathcal{L} = \ell(y) y \nabla P(\bar{x} \mid s, \bar{\rho})$$
 Instruction Pose seq. State
$$\ell(y) = \begin{cases} 1 & y = +1 \\ \frac{P(\bar{x} \mid s, \bar{\rho})}{P'(\bar{x} \mid s, \bar{\rho})} & y = -1 \end{cases}$$

Original sampling probability

Putting it All Together

Model

- Encoder-decoder architecture
- Spatial encoding of the environment and the system's plan (or execution) to a sequence of vectors
- GPT-2 Transformer decoder conditioned on encoder output via pseudo-self attention [Ziegler et al. 2019]

Experimental Setup

- Initialize the model using wizard-of-oz interactions
- Evaluate via user task completion and similarity of user execution to system's plan using earth's mover distance
- No good stopping criteria, so just train for fixed number of epochs

Long-term Study

- The model continually improves in generating instructions that relay its intent
- Task completion improves 44.8→79.4%
- User adaptation does not contribute to system's improvement

Long-term Study

Perceived Correctness (%)

Users' perception of the correctness of their actions with respect to system intent improves

Overall system performance improves 4.5→10.4 points

Long-term Study

- Language becomes simpler
- Potentially more attuned to the task
- But some sideeffects

Further Experimental Highlights

- Error analysis shows reduction of all error categories, such as specifying incorrect cards
- Study shows learning signal is robust across different learning designs
- More results: task-complexity breakdown results, comparison to supervised learning ...

lil.nlp.cornell.edu/cerealbar

Thank you! Questions?

Supplementary Slides

Model

Confounding Factors?

- User Adaptation?
- Training longer (i.e., training stopping criteria)?

Long-term Study: 14 Rounds

The model continually improves in generating instructions that relay its intent

-- 3-card

-- 2-card

Task completion improves 44.7→79.3%

Mulit-goal instructions take longer to improve, but accelerate later on

Long-term Study: 14 Rounds

9 10 11 12 13 14

Users' perception of the correctness of their actions with respect to system intent improves

Overall system performance improves $(4.5 \rightarrow 10.4 \text{ points})$

Error Analysis

- Overall proportion of errors decreased 68.5→26.8%
- Manually analyzed 100 erroneous instructions from initial and final rounds
- Improvements across all error categories
- Share of errors that are underspecifications increases, potentially because of the smaller vocabulary

Error Analysis

Error Type	r = 1	r = 14	Example
Incorrect, missing, or extra cards	75	39	turn left and go to the yellow star triangles
Irrelevant landmarks	13	1	Head toward the windmill house. grab 2 red and triangle
Incorrect direction	30	35	grab the black heart to your left in front of you.
Incorrect actions or conditions	28	14	After the two red triangles, get the 3 red triangles.
Underspecification	8	26	turn right and go straight toward red trees collect two
Implausible instructions	11	1	orange triangle. Turn left and get the two pink hearts and the two pink hearts near the pink hearts.
Proportion of erroneous instructions	68.5%	26.8%	

Table 1: The types of errors observed in erroneous instructions generated during the first (r=1) and final (r=14) rounds of deployment. We show error counts from the 100 randomly-sampled erroneous instructions. Examples illustrate error categories; red strikethrough shows erroneous segments, and <u>blue</u> fragments show possible corrections. Instructions that fit into multiple categories are double counted.

System Variants Study

- FULL: basic setup
- POS-ONLY: use only examples with positive labels
- TC-ONLY: ignore feedback questions, assign positive labels if the user completes the task
- FINE-TUNING: fine-tune w/rehearsal instead of training from scratch

System Variants Study

System Variants Study

Comparison to Supervised Learning

