What is Learned in Visually Grounded Neural Syntax Acquisition

ACL 2020

Noriyuki Kojima Hadar Averbuch-Elor Sasha Rush Yoav Artzi
Unsupervised Syntactic Parsing

Text-Based Syntax Acquisition
Shen et al., 2018a, 2019; Kim et al., 2019; Havrylov et al., 2019; Drozdov et al., 2019, inter alia

Visually Grounded Neural Syntax Learner (VG-NSL)
Shi et al., 2019
Our Work

Question: What does VG-NSL learn?

• Reduce the expressivity of the architecture
• Our significantly less expressive architectures learn similar models
• Observe that VG-NSL largely models noun concreteness
VG-NSL

(((white sheep) (are standing)))

Token embeddings

(Φ)

Scoring function

(score)

Combination function

(combine)

(score)

(score)

(score)

(score)

(white)

(sheep)

(are)

(standing)
VG-NSL

((white sheep) (are standing))

(white sheep)

sheep

(Φ)

are

(Φ)

standing

(Φ)

(score)

0.8

(combine)

(score)

0.4

(are standing)

reward

(score)

0.2

(score)

0.6

Similarities

Negative Examples
Our approach: simplify each module to constrain the model
Our Simplified Variants

Embedding bottleneck: reduce the dimensionality of token embeddings from 512-d to 1-d/2-d

Simplified scoring: parameterized weighted-sum

\[U \cdot 0.8 + V \cdot 0.6 \rightarrow 0.62 \]

Simplified combine: mean pooling

0.35

0.15

0.16

0.19

0.7

0.1

0.2

0.62

0.15

0.19

white

sheep

are

standing
Experiments

• Follow the experimental setup of Shi et al., 2019.
 • Data: MSCOCO (Lin et al., 2014)
 • Gold trees: Benepar (Kitaev and Klein, 2018)
 • Token embeddings: fastText (Joulin et al., 2016)

• Evaluate parsing performance using F score
 • Based on overlaps of constituents in the model predictions and gold trees
Parsing Performance

- Our variants consistently achieve comparable performance to VG-NSL across different training setup.
- Our variants learn nearly identical models to VG-NSL.
The visualization of token embeddings shows a strong preference for separating nouns from other parts of speech.
Noun Concreteness

Hypothesis: noun identification via concreteness plays a central role in VG-NSL performance

• Modify test-time captions to maximize the alignment between noun and concreteness
Noun Concreteness

- Parsing performance improves significantly
- Noun identification via concreteness provides an effective parsing strategy
Conclusion

• We introduce significantly less expressive variants of VG-NSL, maintaining similar performance and predictions
• We identify the key signal learned is noun concreteness
• Our method of analysis is general and applicable beyond parsing

Code: https://github.com/lil-lab/vgnsl_analysis_cleaning