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Unsupervised Syntactic Parsing

white sheep are standing

(white sheep) (are standing)

((white sheep) (are standing))
Text-Based Syntax Acquisition

Shen et al., 2018a, 2019; Kim et al., 
2019; Havrylov et al., 2019; 

Drozdov et al., 2019, inter alia

Visually Grounded Neural Syntax 
Learner (VG-NSL)

Shi et al., 2019



Our Work

Question: What does VG-NSL learn?

• Reduce the expressivity of the architecture
• Our significantly less expressive architectures learn similar models
• Observe that VG-NSL largely models noun concreteness



VG-NSL
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VG-NSL
Token embeddings Scoring function Combination function
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Our approach: simplify each module to constrain the model



Our Simplified Variants
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Experiments
• Follow the experimental setup of Shi et al., 2019.

• Data: MSCOCO (Lin et al., 2014)  
• Gold trees: Benepar (Kitaev and Klein, 2018) 
• Token embeddings: fastText (Joulin et al., 2016)

• Evaluate parsing performance using F score
• Based on overlaps of constituents in the model predictions and gold trees



Parsing Performance
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• Our variants consistently 
achieve comparable 
performance to VG-NSL across 
different training setup

• Our variants learn nearly identical 
models to VG-NSL



Noun Concreteness

2-d

1-d

• The visualization of token 
embeddings shows a strong 
preference for separating nouns 
from other parts of speech



Noun Concreteness

A girl holding a picture A elephant holding an elephant

Hypothesis:  noun identification via concreteness plays a central role in 
VG-NSL performance

• Modify test-time captions to maximize the alignment between noun 
and concreteness
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Noun Concreteness
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• Parsing performance improves 
significantly

• Noun identification via 
concreteness provides an effective 
parsing strategy



Conclusion

• We introduce significantly less expressive variants of VG-NSL, 
maintaining similar performance and predictions
• We identify the key signal learned is noun concreteness
• Our method of analysis is general and applicable beyond parsing

Code: https://github.com/lil-lab/vgnsl_analysis_cleaning

https://github.com/lil-lab/vgnsl_analysis_cleaning

