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Unsupervised Syntactic Parsing
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Text-Based Syntax Acquisition
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Visually Grounded Neural Syntax
Learner (VG-NSL)
Shi et al., 2019




Our Work

Question: What does VG-NSL learn?

* Reduce the expressivity of the architecture
e Our significantly less expressive architectures learn similar models
* Observe that VG-NSL largely models noun concreteness
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VG-NSL
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VG-NSL

Token embeddings
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Our approach: simplify each module to constrain the model



Our Simplified Variants
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A Embedding bottleneck: reduce
the dimensionality of token embeddings
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Experiments

* Follow the experimental setup of Shi et al., 2019.
e Data: MSCOCO (Lin et al., 2014)
* Gold trees: Benepar (Kitaev and Klein, 2018)
* Token embeddings: fastText (Joulin et al., 2016)

e Evaluate parsing performance using F score
* Based on overlaps of constituents in the model predictions and gold trees



Parsing Performance
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e Our variants consistently
achieve comparable
performance to VG-NSL across
different training setup

e Our variants learn nearly identical
models to VG-NSL



Noun Concreteness
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* The visualization of token
embeddings shows a strong

preference for separating nouns
from other parts of speech




Noun Concreteness

Hypothesis: noun identification via concreteness plays a central role in
VG-NSL performance

* Modify test-time captions to maximize the alignment between noun

and concreteness
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Noun Concreteness

64.0

60.0

56.0

52.0

48.0

440

40.0

Basic* (cat)

59.8
57.2
510 | 51.6

"+HI" (elephant)

H Before

60.2

60.7
54.6
52.9

"+Hl+FatstText" "+HI+FatstText-IN"
(motorcycle) (elephant)
W After

* Parsing performance improves
significantly

* Noun identification via
concreteness provides an effective
parsing strategy



Conclusion

 We introduce significantly less expressive variants of VG-NSL,
maintaining similar performance and predictions

* We identify the key signal learned is noun concreteness

* Our method of analysis is general and applicable beyond parsing

Code: https://github.com/lil-lab/vgnsl analysis cleaning



https://github.com/lil-lab/vgnsl_analysis_cleaning

