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What does this look like?

dog

sleeping human

cat

pig

rabbit

This is a tangram puzzle



Tangrams are a Window into 
Abstraction

• Tangrams are abstract shapes built 
from 7 standard pieces

[Clark and Wilkes- Gibbs, 1986; Fox Tree, 1999; Hawkins et al., 2020]



• Tangrams are abstract shapes built 
from 7 standard pieces

• Often used in reference games to 
study abstraction and convention 
formation in humans


• Both important questions for NLP 
models and cognitive science

[Clark and Wilkes- Gibbs, 1986; Fox Tree, 1999; Hawkins et al., 2020]

• But: research relies on a small set, 
limiting potential for generalization

“dog!”
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Tangrams are a Window into 
Abstraction



Overview

• The KiloGram dataset


• Analyzing model generalization



• Kilogram significantly expands 
the current resources


• 1016 tangrams


• Vectorized representation with 
standardized pieces
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[Slocum. 2003. The Tangram Book: The Story of the Chinese Puzzle with over 2000 Puzzles to Solve.]



Language Annotations
• Each tangram comes with language 

annotations


• Previous use of tangrams includes only 
whole-shape descriptions 

• We also annotate:


- Part segmentation along tangram pieces


- Annotations for part names 

• Allows us to explore the relationship between 
the whole shape and the parts in abstract 
reasoning

dog

front legback leg

head
curly tail

body



Annotation Task

This shape, as a whole, looks like a dog .



Annotation Task

This part looks like head .

a dog



Annotation Task

This part looks like body .

a dog

head



Annotation Task

This part looks like front leg .

a dog

head

body



Annotation Task

This part looks like back leg .

a dog

front leg

head

body



Annotation Task

This part looks like curly tail .

a dog

front leg

head

body

back leg

curly tail
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What Did We Get?
• 1,016 tangrams, 13,404 annotations


• 10 individual annotations for each tangram


• Densely annotated 74 tangrams: 50 annotations each


• Vocabulary size: 4,522



Diverse Data: Shape Naming

dog

dog
dog

fish

a fish
goldfish

trophy
robot

princess leia 

from star wars

a rose

street sign pole
drill bit

Shape Naming 
Divergence

Low Diversity High Diversity



Diverse Data: Part Naming

Part Naming 
Divergence

dog

dog
front legback leg
head

curly tail
body

body
leg

tail
head
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pipe
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stem
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chimney
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Diverse Data: Segmentation

Part Segmentation 
Agreement

lamp 

shade

lampa lamp a fish fishfish

dinosaur dinosaursmall 

dinosaur dog dogdog

Low Diversity High Diversity



Overview

• The KiloGram dataset


• Analyzing model generalization



Abstraction as Generalization

• Models that generalize should recognize known concepts in their 
abstract form


• Reference games with abstract stimuli test vision-language models for 
abstraction


• KiloGram allows doing this at scale



Reference Games

a flying goose

?
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+  
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1Experimental 
setups:

2 3 4



Reference Games
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?
a flying goose with a head, wings, a neck, and a body

Reference Games
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Reference Games

?
a flying goose
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Reference Games
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Reference Games

?
a flying goose with a head, wings, a neck, and a body

PARTS 
+  

COLOR

Experimental 
setups:

4WHOLE  
+  

BLACK

PARTS  
+  

BLACK

21 WHOLE 
+  

COLOR

3



Evaluating 

Vision-Language Models

• CLIP (Radford et al., 2021): separate encoding of image and text


• ViLT (Kim et al., 2021): joint encoding of image and text


• Zero-shot and fine-tuned evaluation using reference games 


• 10 tangrams per game



Results
• Pre-trained models show poor 

generalization  

• They also show no use of part information 
in every condition
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Results
• Pre-trained models show poor 

generalization 

• They also show no use of part information 
in every condition


• Fine-tuning dramatically increases model 
performance


• Fine-tuned models benefit from part 
information, especially ViLT
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Results
• Pre-trained models show poor 

generalization 

• They also show no use of part information 
in every condition


• Fine-tuning dramatically increases model 
performance


• Fine-tuned models benefit from part 
information, especially ViLT


• Fine-tuned models approach or even 
surpass human performance
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Human Performance
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• High-performing sub-population still 
outperforms ViLT in every condition


• Low-performing sub-population may have not 
made full use of part correspondence information
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How does adding 

part information help?

Part information is beneficial, but with a diminishing 
return as more part information is added



Thank you!

lil.nlp.cornell.edu/kilogram

• KiloGram: a larger and richer 
tangrams resource 

• Pre-trained models fail to 
generalize via abstraction 

• Reasoning about parts 
improves both human and 
model performance

https://lil.nlp.cornell.edu/kilogram

