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What does this look like?
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This is a tangram puzzle



Tangrams are a Window into
Abstraction

 Tangrams are abstract shapes built
from 7 standard pieces
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Tangrams are a Window into
Abstraction

Tangrams are abstract shapes built
from 7 standard pieces
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Often used in reference games to
study abstraction and convention
formation in humans Referential context
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Both important questions for NLP I P *
models and cognitive science .
But: research relies on a small set, B V * O

limiting potential for generalization
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Overview

e The KiloGram dataset

* Analyzing model generalization -
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[Slocum. 2003. The Tangram Book: The Story of the Chinese Puzzle with over 2000 Puzzles to Solve.]



Language Annotations

curly tail

dog

Each tangram comes with language
annotations

Previous use of tangrams includes only
whole-shape descriptions

We also annotate:

- Part segmentation along tangram pieces
- Annotations for part names

Allows us to explore the relationship between

the whole shape and the parts in abstract
reasoning
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Annotation Task
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This part looks Iike[ curly tail ] .
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What Did We Get?

1,016 tangrams, 13,404 annotations
10 individual annotations for each tangram
Densely annotated 74 tangrams: 50 annotations each

Vocabulary size: 4,522



Diverse Data: Shape Naming
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Diverse Data: Part Naming
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Diverse Data: Segmentation
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Overview

* Analyzing model generalization -



Abstraction as Generalization

Models that generalize should recognize known concepts in their
abstract form

Reference games with abstract stimuli test vision-language models for
abstraction

KiloGram allows doing this at scale



Reference Games
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Reference Games
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Evaluating
Vision-Language Models

CLIP (Radford et al., 2021): separate encoding of image and text
VILT (Kim et al., 2021): joint encoding of image and text
Zero-shot and fine-tuned evaluation using reference games

10 tangrams per game
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Pre-trained models show poor
generalization

They also show no use of part information
in every condition
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* Pre-trained models show poor
generalization

* They also show no use of part information
in every condition



WHOLE PARTS
+BLACK  +BLACK

|C_)S
| I
5 -

NVINNH
di'1o
1TA
NVINNH

. Pre-trained

Results

WHOLE PARTS
+COLOR +COLOR

dno |
LA

CIQS
C
-

NVIANNH |
NYWNH

. Fine-tuned

Pre-trained models show poor
generalization

They also show no use of part information
in every condition

Fine-tuning dramatically increases model
performance

Fine-tuned models benefit from part
information, especially VILT
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Pre-trained models show poor
generalization

They also show no use of part information
in every condition

Fine-tuning dramatically increases model
performance

Fine-tuned models benefit from part
information, especially VILT

Fine-tuned models approach or even
surpass human performance



Human Performance
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High-performing sub-population still
outperforms ViLT in every condition

Low-performing sub-population may have not
made full use of part correspondence information



Target Probability
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How does adding
part information help?

CLIP VILT
//Z-D?
m
2-part
//—ﬁ&part # /
/,//—<2?part~ 3-part i //
0 1 2 3 4 5 6 7 0 1 2 3 4

# of Parts Described and Colored

Part information is beneficial, but with a diminishing
return as more part information is added
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Thank yOU! BN . KiloGram: a larger and richer B

tangrams resource

* Pre-trained models failto
generalize via abstraction

‘+ Reasoning about parts !
improves both human and
model performance
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