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Research Question

e How to continually improve NLP systems by learning
from interaction with users?

e This work:
e NLP system: extractive QA

e |nteraction with users: simulated binary user
feedback based on supervised data
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The United States shares limited maritime borders with
the Bahamas, Cuba, and Russia. With a population of more

than 331 million people, it is the third most populous
country in the world.

Which country is the third most populous?
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Whereas the Lacey Act dealt with game animal management
and market commerce species,a major shift in focus occurred
by 1963 to habitat preservation instead of take regulations. A
provision was added by Congress in the Land and Water
Conservation Fund Act of...
What shift happened in animal regulation
in 1963 in U.S?
To habitat preservation
8 instead of take regulations. .
< o @
22500

45000 67500 90000
# of Examples with Feedback



Answer F1

Learning from Feedback

SQuAD Performance

90
‘/. —— — — ¢
67.5 —
45
22.5
L |
0
0 22500 45000 67500 90000

# of Examples with Feedback



Motivation

e Why learn from user interactions?

- In-deployment
Training data Interaction Data

Reduce data collection costs and avoid artifacts

Enable improvement during deployment

No distributional shift between training and deployment

Systems evolves over time as the world changes
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Contextual Bandit Learning
Online Setup
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We use supervised data to simulate
binary feedback
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Objective: maximize total expected immediate reward




Learning Algorithm

e We use policy gradient

rVelogme(y | q,C)

e Equivalent to REINFORCE except that we use argmax to predict
answers instead of sampling



Experimental Setup

Data: 6 English datasets using Wikipedia, news, and web texts

Evaluation metric: token-level F1

Model: SpanBERT-base

Experiments:
1. In-domain simulation: Little in-domain supervised data

2. Domain adaptation: Abundant out-of-domain supervised data
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e Train an initial model on a small amount of
supervised examples: 64 or 1024




In-Domain Learning

Simulation performance
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e Train an initial model on a small amount of
supervised examples: 64 or 1024

e Simulation: receive rewards and update the
model on the fly



In-Domain Learning

e Works well on SQUAD: performance gains

e Stable learning progression with much of the learning happening early
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In-Domain Learning

e Consistent performance gains on Wikipedia datasets

e Large gains with weaker initial models
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In-Domain Learning

e Consistent performance gains on Wikipedia datasets

* |nconsistent with weaker initial models on challenging/noisy datasets
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Domain Adaptation

o So far: little in-domain data for initialization and continual
bandit learning

e But: what if there is no data for the target domain at all?



Domain Adaptation

Simulation performance

Initial model performance
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Domain Adaptation

e Performance gains on 22/30 configurations
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Domain Adaptation

e Performance gains on 22/30 configurations

o Extrapolate well particularly on HotpotQA from TriviaQA
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Domain Adaptation

e Performance gains on 22/30 configurations
o Extrapolate well particularly on HotpotQA from TriviaQA

e Less consistent adaptation to NewsQA, TriviaQA, and SearchQA
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Related Work

* Bandit learning for NLP
Structured prediction , Semantic parsing
, machine translation
, summarization ,
intent recognization

e Alternative forms of supervision for QA
Fine-grained information , binary
feedback

 Domain Adaptation for QA
Data augmentation , adversarial training
back-training , exploiting small lottery subnetworks



Conclusion

e Formulate learning from user feedback for extractive QA as
a contextual bandit problem

e Demonstrate the effectiveness of the learning signal
through simulation studies, including for domain adaptation

e Much more in the paper: offline learning, noise sensitivity
analysis, regret analysis, and more experiments and
analysis of domain adaptation
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