Learning to Map Natural Language Instructions to Physical Quadcopter Control using Simulated Flight

Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A. Knepper, Yoav Artzi



https://github.com/clic-lab/drif

**Task**: Follow natural language navigation instructions on a physical quadcopter, assuming access only to firstperson RGB images and pose estimates.



Key Contributions:

**Challenges**: Language understanding, grounding, perception, spatial reasoning, exploration and control.

- First demonstration of direct mapping of natural language and first-person observations to continuous robot control without manual representation design
- SuReAL algorithm (Supervised and Reinforcement Asynchronous Learning)
- Language-directed exploration by reducing P(goal unobserved)

## Two-Stage Model (Position Visitation Network v2)



Joint Sim-to-Real Training with SuReAL



Intrinsic Reward for Language-Directed Exploration with Partial Observability

| Exploration Rewar                                                                                                                 | rd +                                                                                                              | - Trajectory Reward                                                                 |                                                                                                                                                                                                                                                                               | opping Reward                | + Step Reward                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|
| Predict actions to reduce P(goal u<br>avoid stopping if P(goal unseen) is                                                         | , ,                                                                                                               | Fly through or near high probability positions according to predicted distribution. |                                                                                                                                                                                                                                                                               | Paction at or near a likely  | Negative per-step penalty to<br>encourage efficiency. |
|                                                                                                                                   | Evaluation                                                                                                        | n on Unseen Environm                                                                | ents and Instruction                                                                                                                                                                                                                                                          | ons                          |                                                       |
| <b>Automated Evaluation</b><br><b>Goal Success Rate:</b><br>How often did the agent stop within<br>47cm of the human demonstrated | Our method on the physical quadcopter<br>Our method simulator performance<br>Our method without language input    | Goal score: How we                                                                  | Human Evaluation (Mturk 5-point Likert-scale scores of agent         Goal score: How well the agent reached the correct       Path score: How correct         goal. 5/5 points 40% of the time.       Path score: How correct path.         1       2       3       4       5 |                              |                                                       |
| goal position.<br><b>Trajectory Earth-Mover's Distance:</b><br>Cost for morphing the agent<br>trajectory to align with the human  | 0.4<br>0.3<br>0.2<br>0.1<br>Lower is better<br>70<br>60<br>50<br>39.3<br>40<br>31<br>30<br>20<br>Higher is better |                                                                                     |                                                                                                                                                                                                                                                                               | 2.43<br>2.95<br>3.00<br>2.97 | 2.66<br>3.24<br>3.23<br>3.48                          |
| demonstration.                                                                                                                    | <ul> <li>Trajectory Earth-<br/>Mover's Distance</li> <li>O Goal Success Rate</li> </ul>                           | I VINZ-BUILEAL                                                                      | 0%                                                                                                                                                                                                                                                                            | 3.27<br>4.46<br>100% -100%   | 3.40         4.52         0%         100%             |