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Motivation

* For wide adoption, robot control
interfaces should be:
* Accessible
* Expressive

* Natural language fulfills these | Go towards the blue fence |
criteria | passing the anvil and tree on the |
| right |

* Combining natural language with



go between the mushroom and flowers chair the tree all the way up to 1helphone boothl
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Following Natural Language Instructions is Hard

It requires:
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Our approach: Two-5Stage Decomposition
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Stage |: Position Visitation Prediction
Predicted ddtetifier@ietmedrenpeotwits itharongidridbpoodirermdated in the map

A convolutional image encoder-decoder architeclure condrtioned on natural language
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Stage 2: Action Generation

No dependence on language — simple control problem.

Training experience not limited by availability of natural language data.
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Learning
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Fvaluation & Results

We are releasing this benchmark!
https://github.com/clic-lab/drif

Realistic simulator
powered by Microsoft
AirSim

Real, crowdsourced
natural language
instructions from the

LANI corpus

We achieve state of the
art: ~4 1% success rate
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Generalization to Predicting State-Visitation Distributions

* Our approach generalizes to predicting state visitation
distributions in an approximation of the true MDP,

* If the MDP approximation is good, then the learned policy
has bounded suboptimality with regard to the true MDP.
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