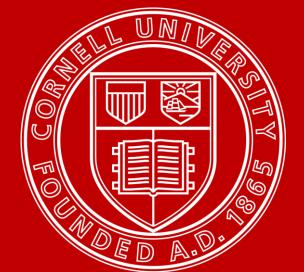
Mapping Navigation Instructions to Continuous Control Actions with Position-Visitation Prediction

Valts Blukis, Dipendra Misra, Ross A. Knepper and Yoav Artzi

Code and simulator: https://github.com/clic-lab/drif



Problem Statement

Goal: map instructions, first-person images and pose estimates to actions for control of a dynamic robotic agent

Existing Approaches

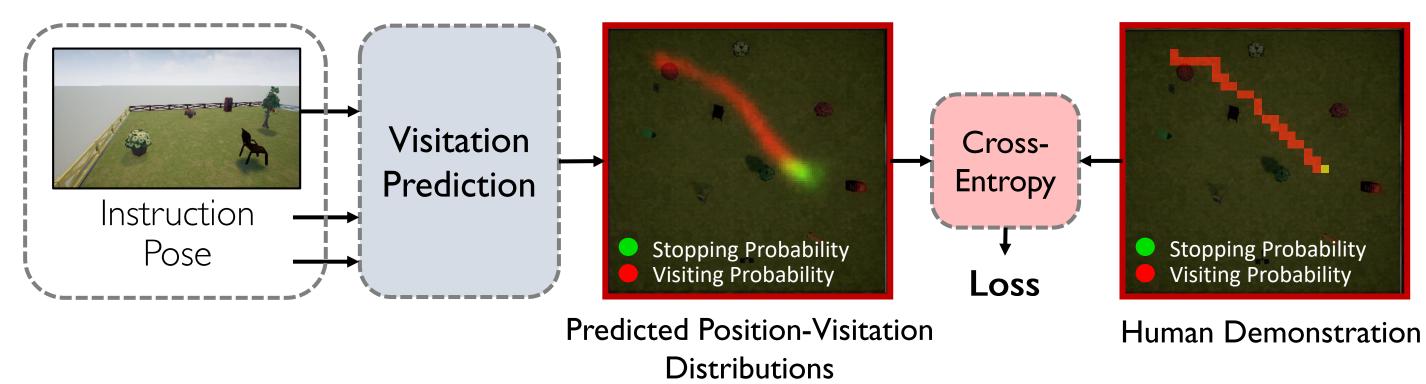
- Decompose problem to perception, instruction understanding, mapping, planning and control modules. Requires design of intermediate representations. Hard to scale to complex scenarios.
- Single model neural network. Lack interpretability. Require large amount of training data. Complex credit assignment in learning language, control and vision simultaneously.

Our Approach

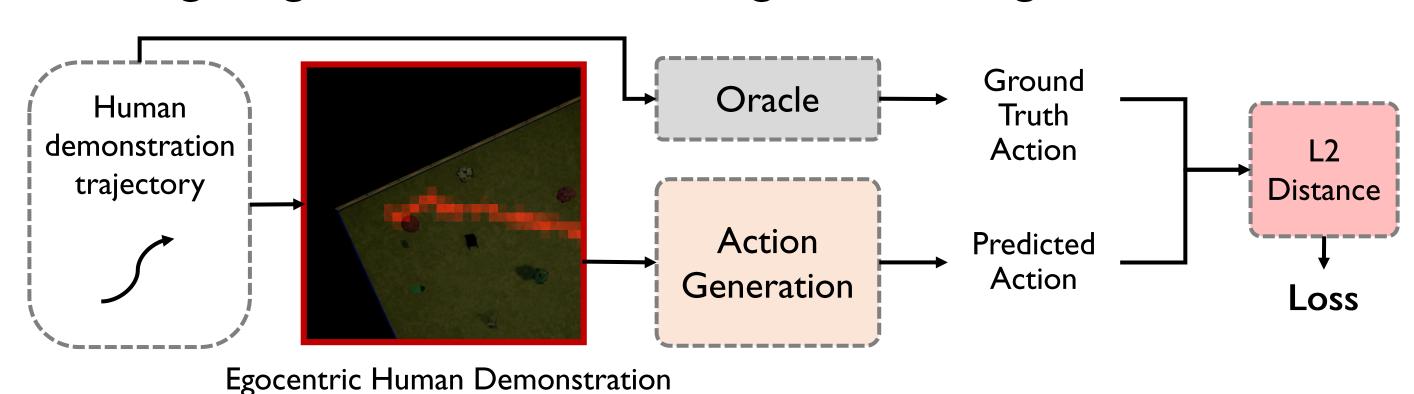
Decompose reasoning and learning in predicting which states to visit (planning) and continuous robot control (action generation).

Learning and Inference

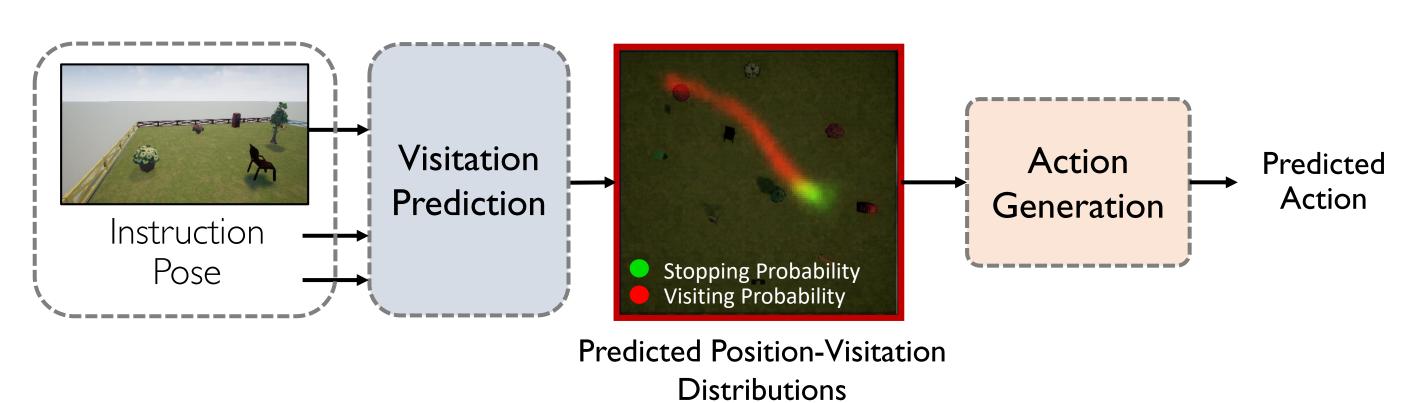
Training Stage A: Supervised learning for visitation prediction



Training Stage B: Imitation learning for action generation



Inference: generate actions from predicted distributions



Reasoning with State-Visitation Distributions

State-Visitation Prediction

- I. Predict likely visited states as a state-visitation distribution
- 2. Generate actions to visit high-probability states

MDP ${\cal S}$ States ${\cal A}$ Actions R Reward H Horizon

The state-visitation distribution of policy $\pi:\mathcal{S} \to Pr(\mathcal{A})$ is the probability of visiting state s following policy π from start state s_0 : $d_\pi(s|s_0)$

Predicting a distribution $\hat{d_{\pi}}(s|s_0)$ over states \mathcal{S} is generally impossible since \mathcal{S} is large.

Solution: predict distribution $\hat{d}_{\pi}(\tilde{s}|\tilde{s}_0)$ over an approximate state space $\tilde{\mathcal{S}}$, and $\phi: \mathcal{S} \to \mathcal{S}$ maps states to $\tilde{\mathcal{S}}$.

For a well chosen ϕ , a decomposed policy that follows a state-visitation distribution $\hat{d}_{\pi}(\tilde{s}|\tilde{s}_0)$ close to $d_{\pi}(s|s_0)$ of the optimal policy has bounded suboptimality.

Navigation with Position-Visitation Prediction

 ${\cal S}$ is the set of discrete **positions** in the world.

Given context ${\it C}$ containing images, poses and an instruction, predict position-visitation distributions:

 $d^p_\pi(ilde p \mid c, s_0)$ - probability of visiting position ilde p.

 $d_{\pi}^g(ilde{p} \mid c, s_0)$ - probability of stopping at position \mathcal{P} .

Evaluation and Results

40 30 20 10 Success rate on heldout test data (%)

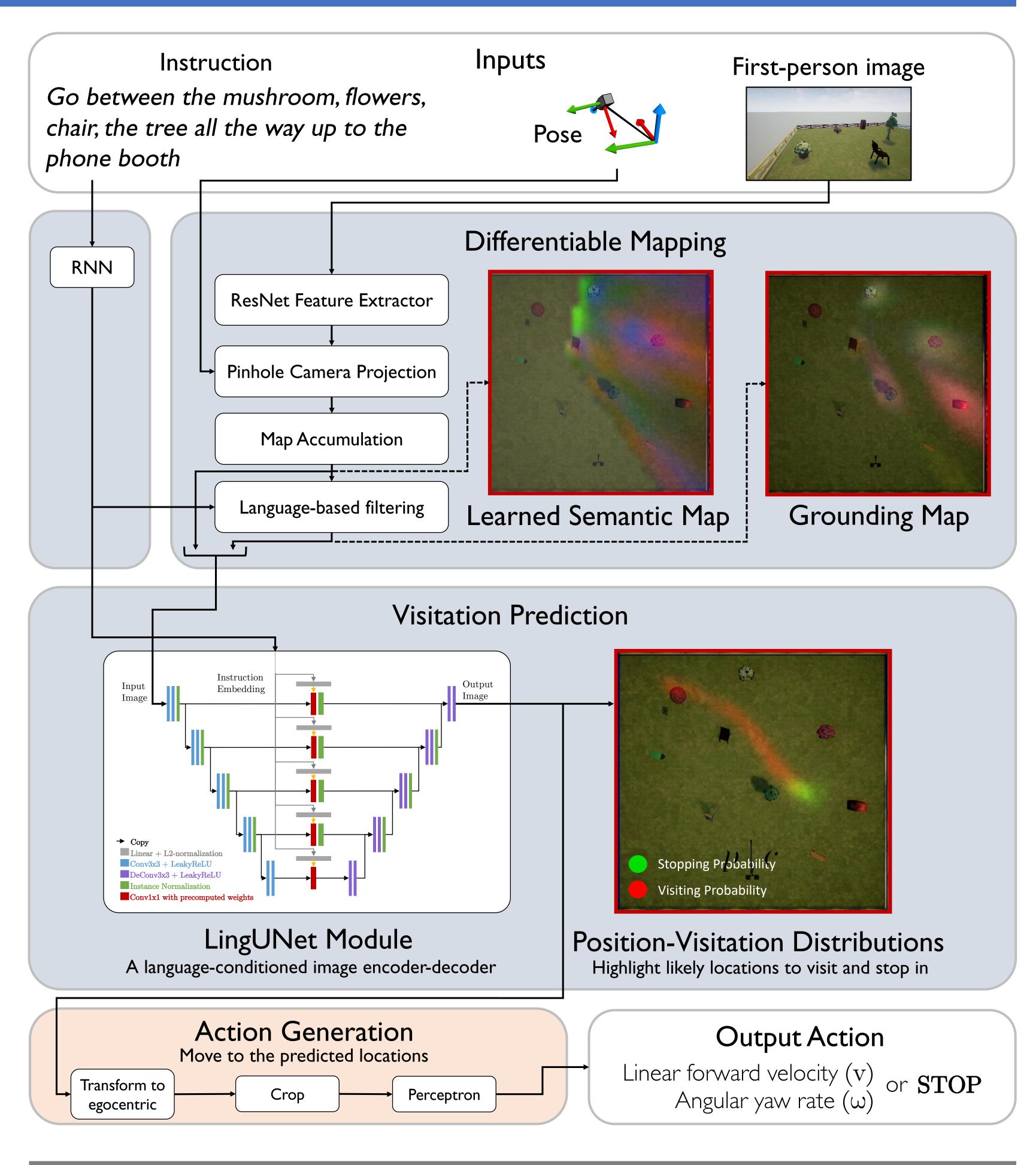
test data (%) PVN (Ours) Blukis et al. 2018 Chaplot et al. 2017

Experimental Setup:

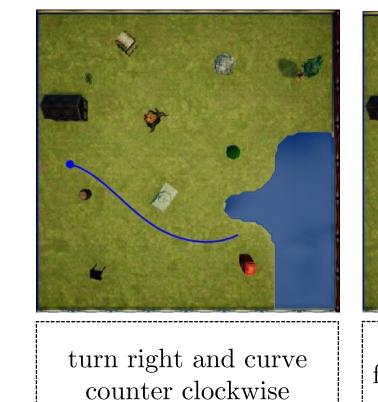
- Realistic, simulated quadcopter powered by Microsoft AirSim.
- Crowdsourced instruction and trajectory data from LANI dataset.

Results:

- 41.21% instruction following success rate.
- Robust to test-time viewpoint and dynamics changes.
- Full-observability maximum success rate: 60.59%.



Execution Examples



around the barrel

chair on your left

go towards the blue fence crossing the water between the 2 homes

go straight until you reach the well