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• Navigation between 
landmarks 

• Agent: quadcopter drone 

• Inputs: poses, raw RGB 
camera images, and 
natural language 
instructions

Task



Task

go straight and stop before reaching the planter 
turn left towards the globe and go forward until just before it



STOP

Mapping Instructions to 
Control

• The drone maintains a configuration of target velocities 

• Each action updates the configuration or stops 

• Goal: learn a mapping from inputs to configuration 
updates

go straight and stop before 
reaching the planter 

turn left globe …
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Language 
Understanding

MappingPerception

Planning Control

Modular Approach

Instruction

• Build/train separate components 
• Symbolic meaning representation 
• Complex integration 



Single-model Approach 
(a.k.a end-to-end)

Instruction

Actionf
How to think of extensibility, interpretability, and modularity 

when packing everything in a single model? 



Single-model Approach
• Extensibility: extending the model to reason about 

new object after training 

• Interpretability: viewing how the model reasons 
about object grounding and trajectories 

• Modularity: re-using parts of the model

Within a representation learning framework



Representation: 
Design vs. Learning

• Systems that use symbolic representations are 
interpretable and (potentially) extensible 

• However: representation design of every possible 
concept is brittle and hard to scale 

• Instead: design the most general concepts and let 
representation learning fill them with content 

• Today, two concepts: objects and trajectories



Today
Few-shot instruction following:  

• Few-shot language-conditioned object 
segmentation 

• Object context mapping 

• Integration into a visitation-prediction policy for 
mapping instructions to drone control



Language-conditioned 
Object Segmentation

• Input: instruction and observation images 

• Goal: identify and align objects and references



Few-shot Version
• Input: instruction, observation images, and database 

• Goal: identify previously unseen objects and 
mentions and align them

orange 
cup plantpot

blue ball planetearth

Database



Alignment via a Database
• Approach: align 

observations and 
references through the 
database 

• Adding objects to the 
database extends the 
alignment ability  

• Requires only adding a 
few image and language 
exemplars

orange 
cup plantpot

blue ball planetearth



Alignment via a Database
• Approach: align 

observations and 
references through the 
database 

• Adding objects to the 
database extends the 
alignment ability  

• Requires only adding a 
few image and language 
exemplars

orange 
cup plantpot

blue ball planetearth

Melon 
wedgethe fruit 

slicewatermelon

the red 
lego   red cubered brick



Alignment Score
go straight and stop before 

reaching the planter 
turn left towards the globe and 
go forward until just before it

orange 
cup plantpot

blue ball planetearth

Database

Bounding box

Reference

Object record

<latexit sha1_base64="63JDzvbINZs3luchNf8vAbdEYww="></latexit>
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Alignment Score
go straight and stop before 

reaching the planter 
turn left towards the globe and 
go forward until just before it

orange 
cup plantpot

blue ball planetearth

Database
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Alignment Score

• Region proposal 
network gives bounding 
boxes and  

•  is uniform

P(b)

P(o)
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Alignment Score

•  is computed using 
visual similarity 

• Using Kernel Density 
Estimation with a symmetric 
multivariate Gaussian kernel 

•  is computed similarly 
using text similarity with pre-
trained embeddings

P(o ∣ b)

P(o ∣ r)
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Mask Refinement
• Refine each bounding 

box with a UNet model 

• Gives a tight object 
mask 

• Paired with a bounded 
alignment score to a 
reference in the text

UNet

go straight and stop before reaching the planter 
turn left towards the globe and go forward until 

just before it

Align = 0.7



Learning

• Region proposal network parameters for bounding box proposal 

• Image similarity measure for  

•  parameters for mask refinement 

• Text similarity uses pre-trained embeddings 

• Challenge: need large-scale heavily annotated visual data

P(o ∣ b)

UNet
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FPV

Augmented Reality Training 
Data

Overlay Composite Mask labels



Augmented Reality Training 
Data

Composite Mask labels

Learned representations generalize 
beyond specific objects for:

• Region proposal network for 
bounding boxes 

• Image similarity measure for  

•  parameters for mask 
refinement

P(o ∣ b)

UNet

Large-scale generation with ShapeNet objects



Today

Few-shot instruction following:  

• Few-shot language-conditioned object 
segmentation 

• Object context mapping 

• Integration into a visitation-prediction policy for 
mapping instructions to drone control



Object Context Mapping

1. Identify and align object mentions to observations 

2. Compute abstract contextual representations for object 
references 

3. Project and aggregate masks over time 

4. Combine aggregated masks with contextual 
representations to create a map

Goal: create maps that capture object location and the 
instruction behavior around objects



Object Context Mapping 
Step I: Identify and Align

• Bounding box proposals from 
Region Proposal Network 

• Object references from tagger 

• Align with language-
conditioned segmentation and 
the database 

• To compute: first-person 
masks aligned to instruction 
references

orange 
cup plantpot

blue 
ball planetearth



TODO: figure

Object Context Mapping 
Step II: Abstract Contextual Representations

• Replace references with 
object placeholders 

• Compute bi-directional RNN 
representations for all tokens 

• The hidden state for each 
placeholder is the object 
context representation

… reaching the planter  
turn left towards the globe and …

… reaching ObjectA left towards ObjectB and …

Abstract 
references



Object Context Mapping 
Step III: Projection and Aggregation
• Projection from first-person camera masks to third-

person environment ground with pinhole camera model 

• Deterministic aggregation

Step 2: Deterministic ProjectionPinhole camera 
projection

First-person 
Masks



Object Context Mapping 
Step III: Projection and Aggregation
• Projection from first-person camera masks to third-

person environment ground with pinhole camera model 

• Deterministic aggregation

Step 2: Deterministic Projection
IntegratorPinhole camera 

projection

Projected Masks 
(time t)

First-person 
Masks



Object Context Mapping 
Step III: Projection and Aggregation
• Projection from first-person camera masks to third-

person environment ground with pinhole camera model 

• Deterministic aggregation

Step 2: Deterministic Projection

Masks 
(time t-1)

Masks 
(time t)

∑

IntegratorPinhole camera 
projection

Projected Masks 
(time t)



Object Context Mapping 
Step IV: Combine Object Rpresentations
• Each position is a product of a mask value and its 

aligned object context representation
… reaching ObjectA left towards ObjectB and …



Object Context Map
• Map information abstracts 

over reference content 
stripped from instruction 

• Includes for each object the 
context of its reference in the 
instruction 

• Tells the agent how to behave 
around the object 

• Policy remains blind to the 
object itself



Today

Few-shot instruction following:  

• Few-shot language-conditioned object 
segmentation 

• Object context mapping 

• Integration into a visitation-prediction policy for 
mapping instructions to drone control



Two-stage Policy

Mapping 
and Plan 

Generation
Action 

Generation

Stage I Stage IIInstruction

Action

1. Map and predict states likely to visit + track observability 

2. Generate actions to visit high-probability states and explore

Visitation Distributions

Observation Mask
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• The state-visitation distribution                   is the 
probability of visiting state     following policy     
from start state    

• Predicting                     for an expert policy       tells 
us the states to visit to complete the task 

• We compute two distributions: trajectory-visitation 
and goal-visitation  

Visitation Distributions

π
d(s; π, s0)

s0

s

π*d(s; π*, s0)



Visitation Distributions

• Distributions reflect the 
agent plan 

• Model path and goal 
observability 

• Refined as observing more 
of the environment

Trajectory distribution
Goal distribution



Stage I: Mapping and Plan 
Generation

Plan 
Generation

Action 
Generation

Stage IIInstruction

Mapping

• Few-shot language-conditioned segmentation to 
construct an object context map 

• Predict distribution over map positions

Trajectory distribution
Goal distribution

Few-shot 
Segmentation

Abstract Instruction



Plan Generation

• Cast distribution prediction as image generation 

• LingUNet: an image-to-image encoder-decoder 

• Visual reasoning at multiple image scales 

• Conditioned on language input at all levels of 
reasoning using text-based convolutions



LingUNet

Convolutions

Instruction

RNN

Text Kernels

Text Convolutions

Deconvolutions

SoftMax

Object 
Map

Visitation Distributions



Two-stage Policy

Mapping 
and Plan 

Generation
Action 

Generation

Stage I Stage IIInstruction

Action

1. Map and predict states likely to visit + track observability 

2. Generate actions to visit high-probability states and explore

Visitation Distributions

Observation Mask
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Stage II: Action Generation
• Relatively simple control problem without language 

• Transform and crop to agent perspective and generate 
configuration update

Trajectory distribution 
Goal distribution

Egocentric Transform

Control 
Network



Training
Instruction

Control 
Network

Mask Visitations

Plan 
GenerationMapping

Trained 
separately

Object Context Map

RNN LingUNet CNN+MLP

Few-shot 
Segmentation

Abstract 
Instruction



Training in Simulation
• Language-conditioned 

segmentation trained 
separately for simulation and 
real environment 

• Policy training does not 
require access to real world 

• After training: swap the 
segmentation component 

• Data: demonstrations and 
experience

Go between the mushroom and 
flower chair the tree all the way up 

to the phone booth



Supervised Learning Reinforcement 
Learning

SuReAL 
Supervised and Reinforcement Asynchronous Learning

Instruction

Control 
Network

Mask Visitations

Plan 
GenerationMapping

Trained 
separately

Object Context Map

RNN LingUNet CNN+MLP

Few-shot 
Segmentation

Abstract 
Instruction



Supervised Learning
Instruction

Plan 
GenerationMapping

Trained 
separately

RNN LingUNet

Few-shot 
Segmentation

Objective: generate visitation 
distributions 
Data: simulation states paired with 
visitation predictions

Cross-
entropy 

loss

Demonstration 
Visitations



Reinforcement 
Learning

RL for Control
Instruction

Control 
Network

Mask Visitations

Plan 
GenerationMapping

Trained 
separately

Object Context Map

RNN LingUNet CNN+MLP

Few-shot 
Segmentation

Abstract 
Instruction

Intrinsic 
reward



Supervised Learning Reinforcement 
Learning

SuReAL 
Supervised and Reinforcement Asynchronous Learning

Instruction

Control 
Network

Plan 
GenerationMapping

Trained 
separately

RNN LingUNet CNN+MLP

Few-shot 
Segmentation

Periodic parameter updates

Sampled action sequences



SuReAL

• Stage I: learn to predict visitation distributions 
based on noisy predicted execution trajectories  

• Stage II: learn to predict actions using predicted 
visitation distributions

Supervised and Reinforcement Asynchronous Learning

Periodic parameter updates

Replace gold action sequences with sampled



Experimental Setup
• Intel Aero quadcopter 

• Vicon motion capture for pose estimate 

• Simulation with Microsoft AirSim 

• Drone cage is 4.7x4.7m 

• All evaluation with eight new objects 

• Database includes five images and five phrases for each object 

• Training data: 41k instruction-demonstration pairs in simulation, 
no demonstration data in the real world



Human Evaluation

• Score path and goal on a 5-point Likert scale for 63 examples 

• Our model receives 4-5 path scores 53% of the time, double than 
PVN2-SEEN, showing effective generalization to unknown objects 

• Outperforming PVN2-ALL illustrates the benefit of the object-
centric inductive bias



Example



Messy Example



Failure



Today
Few-shot instruction following:  

• Few-shot language-conditioned object segmentation 
Modeling objects and aligning their references and 
observations + training with augmented reality data 

• Object context mapping 
Incorporate contextual text information into spatial map 
without specific object information 

• Integration into a visitation-prediction policy for mapping 
instructions to drone control 
Generate trajectory plans over object context map + train in 
simulation only by swapping the segmentation component 



Some Open Questions

• How to elicit exemplars to add to the database 
from human users, potentially within interaction?  

• How to generalize from objects to more general 
objects types?  

• What other object properties should we model? 
Such as permanence and reference consistency



The Papers
• Few-shot Object Grounding for Mapping Natural Language Instructions to Robot 

Control  
Valts Blukis, Ross A. Knepper, and Yoav Artzi 
CoRL, 2020 

• Learning to Map Natural Language Instructions to Physical Quadcopter Control 
Using Simulated Flight  
Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A. Knepper, and Yoav Artzi 
CoRL, 2019 

• Mapping Navigation Instructions to Continuous Control Actions with Position 
Visitation Prediction  
Valts Blukis, Dipendra Misra, Ross A. Knepper, and Yoav Artzi 
CoRL, 2018 

• Following High-level Navigation Instructions on a Simulated Quadcopter with 
Imitation Learning  
Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A. Knepper, and Yoav Artzi 
RSS, 2018.



Valts Blukis

And collaborators: Dipendra Misra, Eyvind Niklasson, 
Nataly Brukhim, Andrew Bennett, and Ross Knepper

 

Thank you! Questions?

https://github.com/lil-lab/drif



[fin]



Object Database



Figure 14: The object database used during development in the physical environment.

24

The object database 
used during 

development in the 
physical environment.



Figure 12: The object database used during testing, containing previously unseen physical objects.

I Implementation Details
I.1 Hyperparameter Settings

Table 4 shows the hyperparameter assignments. We started with the initial values from Blukis et al.
[6], and tuned the parameters relating to our few-shot grounding approach.

22

The object database 
used during testing, 
containing previously 

unseen physical objects.



Visitation Distributions



• Given a Markov Decisions Process: 

• The state-visitation distribution                   is the probability 
of visiting state     following policy     from start state    

• Predicting                    for an expert policy       tells us the 
states to visit to complete the task 

• Can learn from demonstrations, but prediction generally 
impossible:     is very large!

Visitation Distribution

π
d(s; π, s0)

s0s

π*

MDP StatesS ActionsA RewardR HorizonH

S

d(s; π*, s0)



Approximating Visitation 
Distributions

• Solution: approximate the state space 

• Use an approximate state space     and a mapping 
between the state spaces  

• For a well chosen    , a policy     with a state-
visitation distribution close to                  has 
bounded sub-optimality  

MDP StatesS ActionsA RewardR HorizonH

S̃
ϕ : S → S̃

ϕ π
d(s̃; π*, s̃0)



Visitation Distribution for 
Navigation

•    is a set of discrete positions in the world 

• We compute two distributions: trajectory-visitation and 
goal-visitation  

MDP StatesS ActionsA RewardR HorizonH

Trajectory Probability

S̃

Planning with 
Position Visitation 

Prediction
Action 

Generation

Stage I Stage IIInstruction

Action

Goal Probability



Drone Related Work 
(Somewhat outdated)



Related Work: Task
• Mapping instructions to actions with robotic agents 

• Mapping instruction to actions in software and simulated environments 

• Learning visuomotor policies for robotic agents

Tellex et al. 2011; Matuszek et al. 2012; Duvallet et al. 2013; Walter et al. 2013; 
Misra et al. 2014; Hemachandra et al. 2015; Lignos et al. 2015

MacMahon et al. 2006; Branavan et al. 2010; Matuszek et al. 2010, 2012; Artzi et al. 
2013, 2014; Misra et al. 2017, 2018; Anderson et al. 2017; Suhr and Artzi 2018 

Lenz et al. 2015; Levine et al. 2016; Bhatti et al. 2016; Nair et al. 2017; Tobin et al. 
2017; Quillen et al. 2018, Sadeghi et al. 2017



Related Work: Method
• Mapping and planning in neural networks 

• Model and learning decomposition 

• Learning to explore

Bhatti et al. 2016; Gupta et al. 2017; Khan et al. 2018; Savinov et al. 2018; Srinivas 
et al. 2018

Pastor et al. 2009, 2011; Konidaris et al. 2012; Paraschos et al. 2013; Maeda et al. 
2017

Knepper et al. 2015; Nyga et al. 2018



Drone Data Collection



Data
• Crowdsourced with a simplified environment and agent 

• Two-step data collection: writing and validation/segmentation

Go towards the pink flowers and pass them on your left, between them and the 
ladder. Go left around the flower until you're pointed towards the bush, going 

between the gorilla and the traffic cone. Go around the bush, and go in between it 
and the apple, with the apple on your right. Turn right and go around the apple. 



Data
• Crowdsourced with a simplified environment and agent 

• Two-step data collection: writing and validation/segmentation

Go towards the pink flowers and pass them on your left, between them and the 
ladder. Go left around the flower until you're pointed towards the bush, going 

between the gorilla and the traffic cone. Go around the bush, and go in between it 
and the apple, with the apple on your right. Turn right and go around the apple. 

Go towards the pink flowers and pass them on your left, between them and the 
ladder. Go left around the flower until you're pointed towards the bush, going 

between the gorilla and the traffic cone. Go around the bush, and go in between it 
and the apple, with the apple on your right. Turn right and go around the apple. 



CoRL 2018 
Experiments



Experimental Setup
• Crowdsourced instructions and demonstrations 

• 19,758/4,135/4,072 train/dev/test examples 

• Each environment includes 6-13 landmarks  

• Quadcopter simulation with AirSim 

• Metric: task-completion accuracy



Test Results

0

12.5

25

37.5

50

Success Rate

41.21

24.36
21.34

16.43

5.72

STOP
Average
Chaplot et al. 2018
Blukis et al. 2018
Our Approach

• Explicit mapping helps 
performance 

• Explicit planning further 
improves performance



Synthetic vs. Natural 
Language

• Synthetically generated instructions with templates 

• Evaluated with explicit mapping (Blukis et al. 2018) 

• Using natural language is 
significantly more challenging 

• Not only a language problem,  
trajectories become more complex

0

20

40

60

80

Success Rate

24.36

79.2

Synthetic Language
Natural Language



Ablations 
Development Results

• The language is being 
used effectively  

• Auxiliary objectives help 
with credit assignment

0

10.5

21

31.5

42

Success Rate

23.07

30.77

35.98
38.87

40.44
Our Approach
w/o imitation learning
w/o goal distribution
w/o auxiliary objectives
w/o language



Analysis 
Development Results

• Better control can improve 
performance 

• Observing the environment, 
potentially through exploration, 
remains a challenge

0

17.5

35

52.5

70

Success Rate

60.59

45.7

40.44

Our Approach
Ideal Actions
Fully Observable



CoRL 2019 
Experiments



Environment

• Drone cage is 4.7x4.7m 

• Created in reality and simulation 

• 15 possible landmarks, 5-8 in each environment 

• Also: larger 50x50m simulation-only environment 
with 6-13 landmarks out of possible 63



Data
• Real environment training data includes 100 

instruction paragraphs, segmented to 402 instructions 

• Evaluation with 20 paragraphs 

• Evaluate on concatenated consecutive segments 

• Oracle trajectories from a simple carrot planner 

• Much more data in simulation, including for a larger 
50x50m environment



Evaluation

• Two automated metrics 

• SR: success rate 

• EMD: path earth’s move distance 

• Human evaluation: score path and goal on a 5-
point Likert scale



Human Evaluation

• Score path and goal on a 5-point Likert scale for 73 examples 

• Our model receives five-point path scores 37.8% of the time, 
24.8% improvement over PVN2-BC 

• Improvements over PVN2-BC illustrates the benefit of SuReAL 
and the exploration reward



Observability

• Big benefit when goal 
is not immediately 
observed 

• However, complexity 
comes at small 
performance cost on 
easier examples



Test Results

Success Rate

3030.6
29.2

20.8

16.7

Average
PVN-BC
PVN2-BC
Our Approach

EMD

0.52
0.590.61

0.71 • SR often too strict: 30.6% 
compared to 39.7% five-
points on goal 

• EMD performance generally 
more reliable, but still fails to 
account for semantic 
correctness 



Simple vs. Complex 
Instructions

• Performance on easier 
single-segment 
instructions is much higher 

• Instructions are shorter 
and trajectories simpler

Success Rate

3030.6

56.5
1-segment Instructions
2-segment Instructions

EMD

0.52

0.34



Transfer Effects

• Visual and flight dynamics 
transfer challenges remain 

• Even Oracle shows a drop in 
performance form 0.17 EMD 
in the simulation to 0.23 in the 
real environment

Success Rate

30

30.6

33.3

Simulator Real

EMD

0.52

0.42



CoRL 2019 Examples



Cool Example
once near the rear of the gorilla turn right and head 

towards the rock stopping once near it



Failure
head towards the area just to the left of the mushroom 

and then loop around it



CoRL 2019 Sim-real 
Shift Examples



Sim-real Control Shift
when you reach the right of the palm tree take a sharp 

right when you see a blue box   head toward it



Sim-real Control Shift
make a right at the rock and head towards the banana


