Following High-level Navigation Instructions on a Simulated Quadcopter with Imitation Learning Valts Blukis, Nataly Brukhim, Andrew Bennet, Ross A. Knepper and Yoav Artzi

Problem Statement

Goal: map instructions and visual observations to actions Control a quadcopter to execute the instruction and stop at the goal location

Agent observes: first-person camera images and pose estimates. **Output:** continuous velocity commands.

Two Main Types of Existing Approaches

- I. Decompose problem in perception, instruction understanding, mapping, planning and control modules. Requires design of intermediate representations.
- 2. End-to-end neural network with recurrent and convolutional layers. Lack interpretability. Require large amount of training data. Difficult to handle constantly changing first-person observations.

Our Approach: combine the best of both approaches

- Neural network architecture with mapping.
- Mapping module that explicitly builds an environment map.
- Modular architecture where each module has a specific function.
- End-to-end training prevents compounding of errors.

Grounded Semantic Mapping Network (GSMN)

Objective Function

Auxiliary Objectives:

Full Objective Function:

$$J(\Theta) = J_{\rm act}(\Theta) + \lambda_v J_{\rm percept}(\Theta) + \lambda_l J_{\rm lang}(\Theta) + \lambda_g J_{\rm ground}(\Theta) + \lambda_p J_{\rm plan}(\Theta)$$

$${\sf Task} \qquad \qquad {\sf Auxiliary Objectives}$$

Imitation Learning with DAggerFM

- Learn by imitating actions given by oracle policy:
 - 1. Execute oracle and collect dataset D of trajectories, each a sequence of observations and ground-truth actions.
 - 2. Loop:
 - 2.1. Drop N trajectories from D.
 - 2.2. Execute agent policy to collect N trajectories and add to D. Every observation is annotated with ground-truth oracle actions.
 - 2.3. Update policy parameters by gradient descent given dataset D.
- Dataset D does not grow.
- Oracle is a simple carrot-planner control rule following ground truth trajectories.

Experimental Setup

- 3500/750/750 environments-instruction pairs for training/development/testing.
- 63 different objects, 6 to 13 per environment.
- Realistic-dynamics simulator based on Microsoft Airsim and Unreal Engine.

Results and Analysis

- Our model outperforms traditional neural architecture where instead of building a map, a recurrent network is used as memory.
- Almost reaches oracle performance.

Sucess Rate (%) on development data

- Resilient to noise in position estimates (0.5m std dev, map is 30x30m).
- Grounding auxiliary $J_{\text{ground}}(\Theta)$ is essential in our few-sample regime.
- Foal-prediction auxiliary $J_{\text{plan}}(\Theta)$ is not essential for simple instructions.