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Problem Statement

Goal: map instructions and visual observations to actions Two Main Types of Existing Approaches

Control a quadcopter to execute the instruction and stop at the goal location |.  Decompose problem in perception, instruction understanding, mapping, planning and

. . control modules. Requires design of intermediate representations.
Agent observes: first-person camera images and pose estimates. | . | N
2. End-to-end neural network with recurrent and convolutional layers. Lack interpretability.

OUtPUtI continuous velocity commands. Require large amount of training data. Difficult to handle constantly changing first-person
observations.
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Our Approach: combine the best of both approaches

|

i« Forward
i velocity * Neural network archrtecture with mapping.

i * Mapping module that explicitly builds an environment map.

i * Modular architecture where each module has a specific function.

* End-to-end training prevents compounding of errors,
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Objective Function Experimental Setup

Auxiliary Obijectives:

Top-down view
of environment Semantic Map Grounding Map Goal Map

Detected ===
goal

X
X
\ v

Not goal

.

Jpercept (6) : ObjeC’E Jground (@) - Instruction Jplan (@) ; performs [m-m e e m s = I e T S —————]
classification in the mention classification in the goal location detection in 1 Go to the back side of |
semantic map. grounding map. the goal map. : ladder :

Full Objective Function: . . . . - .
* 3500/750/750 environments-instruction pairs for training/development/testing.

J(©) = lJaCt(@} +l Avdpercept (©) + AiJlang (©) + AgJgrouna(©) + )\pJplan(@), * 63 different objects, 6 to |3 per environment.

Task Auxiliary Objectives

* Realistic-dynamics simulator based on Microsoft Airsim and Unreal Engine.

Results and Analysis

Imitation Learning with DAggerFM

. . . . . . 100
* Learn by imitating actions given by oracle policy: 100 792 . oy
1. Execute oracle and collect dataset D of trajectories, each a sequence 30 60 50 '
of observations and ground-truth actions. 28 20 41.2
2. Loop: 20 20 5.73 .
2.1. Drop N trajectories from D. 0 0 —
2.2. Execute agent policy to collect N trajectories and add to D o>MN RNNno — Feed-fwd ~ Oracle rullModetwlo Class GW/Od wio Flan wlotane VK,PPSG
o o . . . roun olse
Every observation is annotated with ground-truth oracle actions. (Ours) mapping o mapping
2.3. Update policy parameters by gradient descent given dataset D sucess Rate (%) on heldout test data >ucess Rate (%) on development data
ST oS e  Our model outperforms traditional * Resilient to noise In position estimates
e Dataset D does not grow. [ - - ) OUP . .
T 5 ! Image  Instruction Pose  Ground truth trajectory : neural architecture where instead of (0.5m std dev, map is 30x30m).
* Oracle is a simple carrot-planner i building a map, a recurrent network Is G di oy J ©) |
control rule fO”OWlﬂg grOUﬂd : used as MeMmMOory. rOUﬂl lng duXxillary “ground !S
truth trajectories. i essential In our few-sample regime.
|
:‘ * Almost reaches oracle performance. * Foal-prediction auxiliary Jpian(©) is not

essential for simple instructions.



