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Tweeting on Twitter

A tweet is 140 characters long

social network
news agency

Twitter is a

replying

Users respond by retweeting



The Problem

* Given a tweet
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Motivation

Good indication of impact
Increases impact

So who might care about this?
— Advertisers
— Celebrities

— Media organizations

Also, a way to rank tweets



Goal

 What triggers a response?
 What features are good for prediction?
* Empirical exploration



Our Approach: Learning

Social
Network

.4

Tweets Extract
.|.
» Features » Learner » Model
Response

Boosted Decision Trees
Maximum Entropy*

*MaxEnt by Chris Quirk, Boosted Decision Trees by Qiang Wu



Our Approach: Testing

Social
Network

.4

Tweet » Model » Prediction




Experimental Setup

* One week of Twitter data
e Searched for response over two weeks

 Randomly sampled training and testing sets:

— 750K tweets for training
— 188K tweets for testing



Results

Recall

—Boosted
Decision
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Building the Model

 What can we get form the language of the
tweet?

* Can we use the social network for prediction?



Features: Sentiment

e How the sentiment of a tweet influences the
response behavior?

* Count of negative/positive sentiment words*

@michaelaSYKES _

1 love the social side of collge; i hartlé’the
lesson side.

*Sentiment lexicon provided by Livia Polanyi
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Features: Posting

 Tweeter posting trends are influenced by time
and day of the week

* Does it influence response behavior?
* Included features:

— Local time of posting
— Day of the week

t fnrdnln atanfard N P (arnl
. afan
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Features: Content

* 45 simple features over the content of the tweet

 Manually developed by observing large number
of tweets

Al @milesosborne
.
I Miles Osborne

# stop words
RT |@yoavartzit What's "minimally
supervised"? How do@ prove
% non English*  supervision|ftoJbe minimal? << good point.
# tokens lightly[suE is|better|#emnlp

28 Jul via TweetDeck Favorite Retweet 4 Reply

*English lexicon provided by Lucy Vanderwend
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Features: Lexical Ratio Buckets

* Detect lexical items indicating towards certain
response behavior

— 14M bigrams
— 400K hashtags
— Collected from 186M tweets

e Use as flags on each tweet that has them



Features: Lexical Ratio Buckets

* Detect lexical items indicating towards certain
response behavior

— 14M bigrams
— 400K hashtags
— Collected from 186M tweets

e Use as flags on each tweet that has them

* |ssues:
— Scalability of learning
— Sparsity



Features: Lexical Ratio Buckets
Collapsing

* For every lexical item [:

tweets containing [ that
received no response

tweets containing [ that
received a response
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Features: Lexical Ratio Buckets
Collapsing

* For every lexical item [:

Jtweets containing [ that
received no response

r 3
Jtweets containing [/ that
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Features: Lexical Ratio Buckets
Collapsing

* For every lexical item [:

a 3
Jtweets containing [that |
_ received no response |

a 3
Jtweets containing [ that
~ received a response |

e Define each such n as a feature

* Trigger feature n for each sample that
contains [
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Features: Social

 What are the characteristics of the user’s
network?

* Simple social statistics
— Number of followers

— Number of followings
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Features: User History

* Aggregate historical ——
response to user ﬁ' g

milesosborne

e 3 months of Twitter data

— QOver 2 billion tweets
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No Local Content Features
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Examples

@BoingBoing

Boing Boing
Help find the stolen scripts for GAME OF
THRONES goo.gl/d5Vi4

@ImSoCelebrity

‘h- Jeremy Drummond

#[fAliensAttack I hope they kill all people

16 and pregnant.



Examples

@BoingBoing

Boing Boing ’
Help find the stolen scripts for GAME OF %
THRONES goo.gl/d5Vig

@ImSoCelebrity

23l Jeremy Drummond

#IfAliensAttack I hope they kill all people x

16 and pregnant.



Examples

Just discovered 'Jamie's Italian'...food is
incredible!! Got pure foodbaby now
thanks mr oliver! XxCatxX ' VidaOfficial

@emilieautumn
Sy Emilie Autumn

On another, more pleasant note (because
there always is one, and it's usually a B
flat), I ate six apples on camera this
weekend.
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Conclusions

Local content matters less
— Or harder to capture

Despite chronological trends on Twitter,
posting time matters less

Historical behavior is a good indicator
Twitter is largely a social game
People are sensitive to certain phrases



Future Work

* New features, such as:
— Clique specific language features
— Denseness of user’s social network
— Mentions of named entities
— Tweet topic

* Predicting more:
— Distinguishing between replies and retweets
— Numerical predictions
— Predicting length of conversation thread



Thank you for listening

\" @yoavartzi
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