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Language to Meaning

More informative



Language to Meaning

More informative

Information 
Extraction

Recover information 
about pre-specified 

relations and entities

Relation Extraction
Example Task

is a(OBAMA,PRESIDENT )



Language to Meaning

More informative

Broad-coverage 
Semantics

Summarization
Example Task

Obama wins 
election. Big party 
in Chicago. 
Romney a bit 
down, asks for 
some tea.

Focus on specific 
phenomena (e.g., verb-

argument matching)



Language to Meaning

More informative

Semantic 
Parsing

Recover complete 
meaning 

representation

Database Query
Example Task

What states 
border Texas?

Oklahoma!
New Mexico!

Arkansas!
Louisiana



Language to Meaning

More informative

Semantic 
Parsing

Recover complete 
meaning 

representation

Instructing a Robot
Example Task

at the chair, 
turn right



Language to Meaning

More informative

Semantic 
Parsing

Recover complete 
meaning 

representation

• Convert to database query to get the answer!
• Allow a robot to do planning

Complete meaning is sufficient to 
complete the task



Language to Meaning

More informative

Semantic 
Parsing

Recover complete 
meaning 

representation

at the chair, move forward three steps past the sofa

�a.pre(a, ◆x.chair(x)) ^move(a) ^ len(a, 3)^
dir(a, forward) ^ past(a, ◆y.sofa(y))



Language to Meaning

More informative

Semantic 
Parsing

Recover complete 
meaning 

representation

at the chair, move forward three steps past the sofa

�a.pre(a, ◆x.chair(x)) ^move(a) ^ len(a, 3)^
dir(a, forward) ^ past(a, ◆y.sofa(y))



Language to Meaning

at the chair, move forward three steps past the sofa

Learn

f : sentence ! logical form

�a.pre(a, ◆x.chair(x)) ^move(a) ^ len(a, 3)^
dir(a, forward) ^ past(a, ◆y.sofa(y))



Language to Meaning

at the chair, move forward three steps past the sofa

Learn

f : sentence ! logical form



Central Problems

ModelingLearningParsing



Parsing Choices

• Grammar formalism!

• Inference procedure

Inductive Logic Programming [Zelle and Mooney 1996]!
SCFG [Wong and Mooney 2006]!
CCG + CKY [Zettlemoyer and Collins 2005]!

Constrained Optimization + ILP [Clarke et al. 2010]!

DCS + Projective dependency parsing [Liang et al. 2011]



Learning

• What kind of supervision is available?!

• Mostly using latent variable methods

Annotated parse trees [Miller et al. 1994]!
Sentence-LF pairs [Zettlemoyer and Collins 2005]!
Question-answer pairs [Clarke et al. 2010]!

Instruction-demonstration pairs [Chen and Mooney 2011]!

Conversation logs [Artzi and Zettlemoyer 2011]!

Visual sensors [Matuszek et al. 2012a]



Semantic Modeling

• What logical language to use?!

• How to model meaning?

Variable free logic [Zelle and Mooney 1996; Wong and Mooney 2006]!
High-order logic [Zettlemoyer and Collins 2005]!
Relational algebra [Liang et al. 2011]!

Graphical models [Tellex et al. 2011]



Today

Modeling Best practices for semantics design

Parsing Combinatory Categorial Grammars

Learning Unified learning algorithm



ModelingLearningParsing



ModelingLearning

!

• Lambda calculus!

• Parsing with Combinatory Categorial 
Grammars !

• Linear CCGs!

• Factored lexicons

Parsing



ModelingParsing

!

• Structured perceptron!

• A unified learning algorithm!

• Supervised learning!

• Weak supervision

Learning



LearningParsing

!

• Semantic modeling for:!
- Querying databases!
- Referring to physical objects!
- Executing instructions!

Modeling



UW SPF
Open source semantic parsing framework!

http://yoavartzi.com/spf

Semantic 
Parser

Flexible High-Order 
Logic Representation

Learning 
Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 2013a]

http://yoavartzi.com/spf


ModelingLearning

!

• Lambda calculus!

• Parsing with Combinatory Categorial 
Grammars !

• Linear CCGs!

• Factored lexicons

Parsing



Lambda Calculus

• Formal system to express computation!

• Allows high-order functions

�a.move(a) ^ dir(a, LEFT ) ^ to(a, ◆y.chair(y))^
pass(a,Ay.sofa(y) ^ intersect(Az.intersection(z), y))

[Church 1932]



Lambda Calculus 
Base Cases

• Logical constant!

• Variable!

• Literal!

• Lambda term



Lambda Calculus 
Logical Constants

NY C,CA,RAINIER,LEFT, . . .

located in, depart date, . . .

• Represent objects in the world



Lambda Calculus 
Variables

• Abstract over objects in the world!

• Exact value not pre-determined

x, y, z, . . .



Lambda Calculus 
Literals

• Represent function application

located in(AUSTIN, TEXAS)

city(AUSTIN)



ArgumentsPredicate

Lambda Calculus 
Literals

• Represent function application

located in(AUSTIN, TEXAS)

city(AUSTIN)

Logical expression List of logical expressions



Lambda Calculus 
Lambda Terms

• Bind/scope a variable!

• Repeat to bind multiple variables

�x.�y.located in(x, y)

�x.city(x)



Body

Lambda 
operator

Variable

Lambda Calculus 
Lambda Terms

• Bind/scope a variable!

• Repeat to bind multiple variables

�x.�y.located in(x, y)

�x.city(x)



Lambda Calculus 
Quantifiers?

• Higher order constants!

• No need for any special mechanics!

• Can represent all of first order logic

8(�x.big(x) ^ apple(x))

¬(9(�x.lovely(x))
◆(�x.beautiful(x) ^ grammar(x))



Lambda Calculus 
Syntactic Sugar

^ (A,^(B,C)) , A ^B ^ C

_ (A,_(B,C)) , A _B _ C

¬(A) , ¬A
Q(�x.f(x)) , Qx.f(x)

for Q 2 {◆,A, 9, 8}



�x.flight(x) ^ to(x,move)

�x.flight(x) ^ to(x,NY C)

�x.NY C(x) ^ x(to,move)



�x.flight(x) ^ to(x,move)

�x.flight(x) ^ to(x,NY C)

�x.NY C(x) ^ x(to,move)



Simply Typed Lambda Calculus

• Like lambda calculus!

• But, typed

[Church 1940]

�x.flight(x) ^ to(x,move)

�x.flight(x) ^ to(x,NY C)

�x.NY C(x) ^ x(to,move)



Lambda Calculus 
Typing

e
t Truth-

value

Entity

• Simple types!

• Complex types

< e, t >

<< e, t >, e >



Lambda Calculus 
Typing

e
t Truth-

value

Entity

• Simple types!

• Complex types

RangeDomain

< e, t >

<< e, t >, e >

Type 
constructor



Lambda Calculus 
Typinge

tr

t

loc

• Hierarchical typing system

• Simple types!

• Complex types

RangeDomain

< e, t >

<< e, t >, e >

Type 
constructor



Lambda Calculus 
Typinge

fla
fl

tr

gt

t

loc

ap

ci

i
ti

• Hierarchical typing system

RangeDomain

• Simple types!

• Complex types
Type 

constructor

< e, t >

<< e, t >, e >



Simply Typed Lambda Calculus

�a.move(a) ^ dir(a, LEFT ) ^ to(a, ◆y.chair(y))^
pass(a,Ay.sofa(y) ^ intersect(Az.intersection(z), y))

Type information usually omitted



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Capturing Meaning with 
Lambda Calculus

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Show me mountains in states 
bordering Texas

[Zettlemoyer and Collins 2005]



Capturing Meaning with 
Lambda Calculus

SYSTEM how can I help you ?

USER i ‘ d like to fly to new york
SYSTEM flying to new york . leaving what city ?
USER from boston on june seven with american airlines

SYSTEM flying to new york . what date would you like to depart boston ?

USER june seventh
SYSTEM do you have a preferred airline ?
USER american airlines

SYSTEM
o . k . leaving boston to new york on june seventh flying with 
american airlines . where would you like to go to next ?

USER back to boston on june tenth
[CONVERSATION CONTINUES]

[Artzi and Zettlemoyer 2011]



Capturing Meaning with 
Lambda Calculus

go to the chair 
and turn right

�a.move(a)

^ to(a, . . .

[Artzi and Zettlemoyer 2013b]



Capturing Meaning with 
Lambda Calculus

• Flexible representation!

• Can capture full complexity of natural 
language

More on modeling meaning later



Constructing Lambda 
Calculus Expressions

at the chair, move forward three steps past the sofa

�a.pre(a, ◆x.chair(x)) ^move(a) ^ len(a, 3)^
dir(a, forward) ^ past(a, ◆y.sofa(y))

?



Combinatory Categorial 
Grammars

CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

[Steedman 1996, 2000]



Combinatory Categorial 
Grammars

• Categorial formalism!

• Transparent interface between syntax and 
semantics!

• Designed with computation in mind!

• Part of a class of mildly context sensitive 
formalisms (e.g., TAG, HG, LIG) [Joshi et al. 1990]



CCG Categories

ADJ : �x.fun(x)

• Basic building block!

• Capture syntactic and semantic information 
jointly



CCG Categories

Syntax Semantics
ADJ : �x.fun(x)

• Basic building block!

• Capture syntactic and semantic information 
jointly



CCG Categories

• Primitive symbols: N, S, NP, ADJ and PP!

• Syntactic combination operator (/,\)!

• Slashes specify argument order and direction

Syntax
ADJ : �x.fun(x)

NP : CCG

(S\NP )/ADJ : �f.�x.f(x)



Semantics

CCG Categories

• λ-calculus expression!

• Syntactic type maps to semantic type

ADJ : �x.fun(x)

NP : CCG

(S\NP )/ADJ : �f.�x.f(x)



CCG Lexical Entries

fun ` ADJ : �x.fun(x)

• Pair words and phrases with meaning!

• Meaning captured by a CCG category



CCG CategoryNatural!
Language

CCG Lexical Entries

fun ` ADJ : �x.fun(x)

• Pair words and phrases with meaning!

• Meaning captured by a CCG category



CCG Lexicons

fun ` ADJ : �x.fun(x)

CCG ` NP : CCG

is ` (S\NP )/ADJ : �f.�x.f(x)

• Pair words and phrases with meaning!

• Meaning captured by a CCG category



Between CCGs and CFGs

CFGs CCGs

Combination operations Many Few

Parse tree nodes Non-terminals Categories

Syntactic symbols Few dozen
Handful, but 
can combine

Paired with words POS tags Categories



Parsing with CCGs
CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

Use lexicon to match words and 
phrases with their categories



CCG Operations

• Small set of operators!

• Input: 1-2 CCG categories!

• Output: A single CCG category!

• Operate on syntax semantics together!

• Mirror natural logic operations



CCG Operations 
Application

A/B : f B : g ) A : f(g) (>)

B : g A\B : f ) A : f(g) (<)

• Equivalent to function application!

• Two directions: forward and backward!

- Determined by slash direction



ResultArgument Function

CCG Operations 
Application

A/B : f B : g ) A : f(g) (>)

B : g A\B : f ) A : f(g) (<)

• Equivalent to function application!

• Two directions: forward and backward!

- Determined by slash direction



Parsing with CCGs
CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

Use lexicon to match words and 
phrases with their categories



Parsing with CCGs

A/B : f B : g ) A : f(g) (>)

CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

Combine categories using operators



Parsing with CCGs

Combine categories using operators

B : g A\B : f ) A : f(g) (<)

CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)



Parsing with CCGs

square blue or round yellow pillow

Non-standard 
coordination

Composed 
adjectives



CCG Operations 
Composition

• Equivalent to function composition*!

• Two directions: forward and backward

B\C : g A\B : f ) A\C : �x.f(g(x)) (< B)

A/B : f B/C : g ) A/C : �x.f(g(x)) (> B)

* Formal definition of logical composition in supplementary slides



f◦ggf

CCG Operations 
Composition

• Equivalent to function composition*!

• Two directions: forward and backward

B\C : g A\B : f ) A\C : �x.f(g(x)) (< B)

A/B : f B/C : g ) A/C : �x.f(g(x)) (> B)

* Formal definition of logical composition in supplementary slides



CCG Operations 
Type Shifting

ADJ : �x.g(x) ) N/N : �f.�x.f(x) ^ g(x)

AP : �e.g(e) ) S/S : �f.�e.f(e) ^ g(e)

AP : �e.g(e) ) S\S : �f.�e.f(e) ^ g(e)

PP : �x.g(x) ) N\N : �f.�x.f(x) ^ g(x)

• Category-specific unary operations!

• Modify category type to take an argument!

• Helps in keeping a compact lexicon



OutputInput

CCG Operations 
Type Shifting

ADJ : �x.g(x) ) N/N : �f.�x.f(x) ^ g(x)

AP : �e.g(e) ) S/S : �f.�e.f(e) ^ g(e)

AP : �e.g(e) ) S\S : �f.�e.f(e) ^ g(e)

PP : �x.g(x) ) N\N : �f.�x.f(x) ^ g(x)

• Category-specific unary operations!

• Modify category type to take an argument!

• Helps in keeping a compact lexicon



OutputInput

CCG Operations 
Type Shifting

ADJ : �x.g(x) ) N/N : �f.�x.f(x) ^ g(x)

AP : �e.g(e) ) S/S : �f.�e.f(e) ^ g(e)

AP : �e.g(e) ) S\S : �f.�e.f(e) ^ g(e)

PP : �x.g(x) ) N\N : �f.�x.f(x) ^ g(x)

• Category-specific unary operations!

• Modify category type to take an argument!

• Helps in keeping a compact lexicon

Topicalization



CCG Operations 
Coordination

• Coordination is special cased!

- Specific rules perform coordination!

- Coordinating operators are marked with 
special lexical entries

and ` C : conj

or ` C : disj



Parsing with CCGs
square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

<
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))



Parsing with CCGs
square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

<
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

Use lexicon to match words and 
phrases with their categories



Parsing with CCGs

Shift adjectives to combine

ADJ : �x.g(x) ) N/N : �f.�x.f(x) ^ g(x)

square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

<
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))



Parsing with CCGs

Shift adjectives to combine

ADJ : �x.g(x) ) N/N : �f.�x.f(x) ^ g(x)

square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

<
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))



Parsing with CCGs

Compose pairs of adjectives

A/B : f B/C : g ) A/C : �x.f(g(x)) (> B)

square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

>
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))



Parsing with CCGs

Coordinate composed adjectives

square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

>
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))



Parsing with CCGs

Apply coordinated adjectives to noun

square blue or round yellow pillow

ADJ ADJ C ADJ ADJ N

�x.square(x) �x.blue(x) disj �x.round(x) �x.yellow(x) �x.pillow(x)

N/N N/N N/N N/N

�f.�x.f(x) ^ square(x) �f.�x.f(x) ^ blue(x) �f.�x.f(x) ^ round(x) �f.�x.f(x) ^ yellow(x)

>B >B
N/N N/N

�f.�x.f(x) ^ square(x) ^ blue(x) �f.�x.f(x) ^ round(x) ^ yellow(x)

<�>
N/N

�f.�x.f(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

>
N

�x.pillow(x) ^ ((square(x) ^ blue(x)) _ (round(x) ^ yellow(x)))

A/B : f B : g ) A : f(g) (>)



Parsing with CCGs
CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

Lexical 
Ambiguity

Many parsing 
decisions

Many potential 
trees and LFs+

x 

z
y



Weighted Linear CCGs
• Given a weighted linear model:!

- CCG lexicon Λ!

- Feature function !

- Weights !

• The best parse is:!

!

• We consider all possible parses y for sentence x given 
the lexicon Λ

y

⇤
= argmax

y
w · f(x, y)

f : X ⇥ Y ! Rm

w 2 Rm



Parsing Algorithms

• Syntax-only CCG parsing has polynomial 
time CKY-style algorithms!

• Parsing with semantics requires entire 
category as chart signature!

- e.g., !

• In practice, prune to top-N for each span!

- Approximate, but polynomial time

ADJ : �x.fun(x)



More on CCGs

• Generalized type-raising operations!

• Cross composition operations for cross 
serial dependencies!

• Compositional approaches to English 
intonation!

• and a lot more ... even Jazz

[Steedman 1996; 2000; 2011; Granroth and Steedman 2012]



The Lexicon Problem

• Key component of CCG!

• Same words often paired with many 
different categories!

• Difficult to learn with limited data



Factored Lexicons

• Lexical entries share information!

• Decomposition of entries can lead to more 
compact lexicons

the house dog

◆x.dog(x) ^ of(x, ◆y.house(y))

N : �x.house(x)

N : �x.house(x)

the dog of the house

the garden dog
◆x.dog(x) ^ of(x, ◆y.garden(y))

[Kwiatkowski et al. 2011]



Factored Lexicons

• Lexical entries share information!

• Decomposition of entries can lead to more 
compact lexicons

the house dog

◆x.dog(x) ^ of(x, ◆y.house(y))

N : �x.house(x)

N : �x.house(x)

the dog of the house

house ` ADJ : �x.of(x, ◆y.house(y))

house ` N : �x.house(x)

the garden dog
◆x.dog(x) ^ of(x, ◆y.garden(y))

garden ` ADJ : �x.of(x, ◆y.garden(y))



Factored Lexicons

• Lexical entries share information!

• Decomposition of entries can lead to more 
compact lexicons

the house dog

◆x.dog(x) ^ of(x, ◆y.house(y))

N : �x.house(x)

N : �x.house(x)

the dog of the house

house ` ADJ : �x.of(x, ◆y.house(y))

house ` N : �x.house(x)

the garden dog
◆x.dog(x) ^ of(x, ◆y.garden(y))

garden ` ADJ : �x.of(x, ◆y.garden(y))



Factored Lexicons

• Lexical entries share information!

• Decomposition of entries can lead to more 
compact lexicons

the house dog

◆x.dog(x) ^ of(x, ◆y.house(y))

N : �x.house(x)

N : �x.house(x)

the dog of the house

house ` ADJ : �x.of(x, ◆y.house(y))

house ` N : �x.house(x)

the garden dog
◆x.dog(x) ^ of(x, ◆y.garden(y))

garden ` ADJ : �x.of(x, ◆y.garden(y))



Templates

Lexemes

Factored Lexicons

N : �x.house(x)

N : �x.house(x)

house ` ADJ : �x.of(x, ◆y.house(y))

house ` N : �x.house(x)

garden ` ADJ : �x.of(x, ◆y.garden(y))
�(!, {vi}n1 ).

[! ` ADJ : �x.of(x, ◆y.v1(y))]

�(!, {vi}n1 ).
[! ` N : �x.v1(x)]

(garden, {garden})
(house, {house})



Factored Lexicons

N : �x.house(x)

N : �x.house(x)

• Capture systematic variations 
in word usage!

• Each variation can then be 
applied to compact units of 
lexical meaning

• Model word meaning!

• Abstracts the compositional 
nature of the word!

Templates Lexemes
�(!, {vi}n1 ).

[! ` ADJ : �x.of(x, ◆y.v1(y))]

�(!, {vi}n1 ).
[! ` N : �x.v1(x)]

(garden, {garden})
(house, {house})



Factored Lexicons

N : �x.house(x)

N : �x.house(x)

�(!, {vi}n1 ).
[! ` N : �x.v1(x)]

(garden, {garden})

Words Constants

garden ` N : �x.garden(x)

!  garden

v1  garden



Factored Lexicons
flight ` S|NP : �x.flight(x)

flight ` S|NP/(S|NP ) : �f.�x.flight(x) ^ f(x)

flight ` S|NP\(S|NP ) : �f.�x.flight(x) ^ f(x)

ground transport ` S|NP : �x.trans(x)

ground transport ` S|NP/(S|NP ) : �f.�x.trans(x) ^ f(x)

ground transport ` S|NP\(S|NP ) : �f.�x.trans(x) ^ f(x)

�(!, {vi}n1 ).[! ` S|NP : �x.v1(x)]

�(!, {vi}n1 ).[! ` S|NP/(S|NP ) : �f.�x.v1(x) ^ f(x)]

�(!, {vi}n1 ).[! ` S|NP\(S|NP ) : �f.�x.v1(x) ^ f(x)]

(flight, {flight})
(ground transport, {trans})

Factored!
Lexicon

Original!
Lexicon



Factoring a Lexical Entry
house ` ADJ : �x.of(x, ◆y.house(y))

�(!, {vi}n1 ).[! ` ADJ : �x.of(x, ◆y.v1(y))]

(house, {house})

(house, {of, house})
�(!, {vi}n1 ).[! ` ADJ : �x.v1(x, ◆y.v2(y))]

�(!, {vi}n1 ).[! ` ADJ : �x.v1(x, ◆y.house(y))]

(house, {of})

Partial 
factoring

Partial 
factoring

Maximal 
factoring



ModelingLearning

!

• Lambda calculus!

• Parsing with Combinatory Categorial 
Grammars !

• Linear CCGs!

• Factored lexicons

Parsing



Learning

Data CCGLearning 
Algorithm

• What kind of data/supervision we can use?!

• What do we need to learn?



Parsing as Structure 
Prediction

show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)



Learning CCG

Lexicon Combinators

show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)



Learning CCG

Lexicon Combinators
Predefined

show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)



Learning CCG

wLexicon Combinators
Predefined

show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)



Supervised Data
show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)



show me flights to Boston

S/N N PP/NP NP
�f.f �x.flight(x) �y.�x.to(x, y) BOSTON

>
PP

�x.to(x,BOSTON)

N\N
�f.�x.f(x) ^ to(x,BOSTON)

<
N

�x.flight(x) ^ to(x,BOSTON)

>
S

�x.flight(x) ^ to(x,BOSTON)

Supervised Data

Latent



Supervised Data
Supervised learning is done from pairs 

of sentences and logical forms

Show me flights to Boston

I need a flight from baltimore to seattle
�x.flight(x) ^ from(x,BALTIMORE) ^ to(x, SEATTLE)

�x.flight(x) ^ to(x,BOSTON)

what ground transportation is available in san francisco
�x.ground transport(x) ^ to city(x, SF )

[Zettlemoyer and Collins 2005; 2007]



Weak Supervision

• Logical form is latent!

• “Labeling” requires less expertise!

• Labels don’t uniquely determine correct 
logical forms!

• Learning requires executing logical forms 
within a system and evaluating the result



Weak Supervision 
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision 
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

argmax(�x.state(x)

^ border(x, TX),�y.size(y))

argmax(�x.river(x)

^ in(x, TX),�y.size(y))

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision 
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

argmax(�x.state(x)

^ border(x, TX),�y.size(y))

argmax(�x.river(x)

^ in(x, TX),�y.size(y))

New Mexico

Rio Grande

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision 
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

argmax(�x.state(x)

^ border(x, TX),�y.size(y))

argmax(�x.river(x)

^ in(x, TX),�y.size(y))

New Mexico

Rio Grande

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision 
Learning from Demonstrations

[Chen and Mooney 2011; Kim and Mooney 2012; Artzi and Zettlemoyer 2013b]

at the chair, move forward three steps past the sofa



Weak Supervision 
Learning from Demonstrations

[Chen and Mooney 2011; Kim and Mooney 2012; Artzi and Zettlemoyer 2013b]

at the chair, move forward three steps past the sofa

Some examples from other domains:!

• Sentences and labeled game states [Goldwasser and Roth 2011]!

• Sentences and sets of physical objects [Matuszek et al. 2012]



Weak Supervision 
Learning from Conversation Logs

SYSTEM how can I help you ? (OPEN_TASK)
USER i ‘ d like to fly to new york
SYSTEM flying to new york . (CONFIRM: from(fl, ATL)) leaving what city ? 

(ASK: λx.from(fl,x))
USER from boston on june seven with american airlines
SYSTEM flying to new york . (CONFIRM: to(fl, NYC)) what date would you 

like to depart boston ? (ASK: λx.date(fl,x)∧to(fl, BOS))
USER june seventh
[CONVERSATION CONTINUES]

[Artzi and Zettlemoyer 2011]



ModelingParsing

!

• Structured perceptron!

• A unified learning algorithm!

• Supervised learning!

• Weak supervision

Learning



Structured Perceptron

• Simple additive updates !

- Only requires efficient decoding (argmax)!

- Closely related to MaxEnt and other 
feature rich models!

- Provably finds linear separator in finite 
updates, if one exists!

• Challenge: learning with hidden variables



Structured Perceptron

Data: {(xi, yi) : i = 1 . . . n}

For t = 1 . . . T :

For i = 1 . . . n:

y

⇤  argmaxyh✓,�(xi, y)i
If y

⇤ 6= yi:

✓  ✓ + �(xi, yi)� �(xi, y
⇤
)

[iterate epochs]!

[iterate examples]

[predict]!
[check]!

[update]

[Collins 2002]



Log-linear model:

Step 1: Differentiate, to maximize data log-likelihood

Step 2: Use online, stochastic gradient updates, for example i:

Step 3: Replace expectations with maxes (Viterbi approx.)

p(y|x) = e

w·f(x,y)
P

y

0 e
w·f(x,y0)

update =
X

i

f(x
i

, y

i

)� E

p(y|xi)f(xi

, y)

update

i

= f(x
i

, y

i

)� E

p(y|xi)f(xi

, y)

y

⇤
= argmax

y
w · f(xi, y)whereupdatei = f(xi, yi)� f(xi, y

⇤)

One Derivation of the Perceptron



The Perceptron with Hidden Variables

Log-linear 
model:

Step 1: Differentiate marginal, to maximize data log-likelihood

Step 2: Use online, stochastic gradient updates, for example i:

Step 3: Replace expectations with maxes (Viterbi approx.)

where

p(y, h|x) = e

w·f(x,h,y)
P

y

0
,h

0 e
w·f(x,h0

,y

0)

update =
X

i

E

p(h|yi,xi)[f(xi

, h, y

i

)]� E

p(y,h|xi)[f(xi

, h, y)]

updatei = f(xi, h
0
, yi)� f(xi, h

⇤
, y

⇤)

y

⇤
, h

⇤
= argmax

y,h
w · f(xi, h, y) and h

0
= argmax

h
w · f(xi, h, yi)

p(y|x) =
X

h

p(y, h|x)

update

i

= E

p(yi,h|xi)[f(xi

, h, y

i

)]� E

p(y,h|xi)[f(xi

, h, y)]



Hidden Variable Perceptron

[iterate epochs]!

[iterate examples]

[predict]!

[check]!

[predict hidden]!

[update]

Data: {(xi, yi) : i = 1 . . . n}

For t = 1 . . . T :

For i = 1 . . . n:

y

⇤
, h

⇤  argmaxy,hh✓,�(xi, h, y)i
If y

⇤ 6= yi:

h

0  argmaxhh✓,�(xi, h, yi)
✓  ✓ + �(xi, h

0
, yi)� �(xi, h

⇤
, y

⇤
)

[Liang et al. 2006; Zettlemoyer and Collins 2007]



Hidden Variable Perceptron
• No known convergence guarantees!

- Log-linear version is non-convex!

• Simple and easy to implement!

- Works well with careful initialization!

• Modifications for semantic parsing!

- Lots of different hidden information!

- Can add a margin constraint, do 
probabilistic version, etc.



Unified Learning Algorithm

• Handle various learning signals!

• Estimate parsing parameters!

• Induce lexicon structure!

• Related to loss-sensitive structured 
perceptron [Singh-Miller and Collins 2007]



Learning Choices

Validation Function Lexical Generation 
Procedure

• Indicates correctness 
of a parse y!

• Varying     allows for 
differing forms of 
supervision!

• Given:!
sentence!
validation function!
lexicon !
parameters!

• Produce a overly general 
set of lexical entries

V : Y ! {t, f} GENLEX(x,V;⇤, ✓)

V V

✓
⇤

x



Unified Learning Algorithm

• Online!

• Input:!

!

• 2 steps:!

- Lexical generation!

- Parameter update

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

{(xi,Vi) : i = 1 . . . n}



Initialize parameters and 
lexicon

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

⇤0 initial lexicon



Iterate over data

T # iterations

n # samples

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤



Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤



Generate a large set of 
potential lexical entries

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

xi sentence

Vi validation function

GENLEX(xi,Vi;⇤, ✓)

lexical generation function



Generate a large set of 
potential lexical entries

Procedure to propose 
potential new lexical 
entries for a sentence

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

xi sentence

Vi validation function

GENLEX(xi,Vi;⇤, ✓)

lexical generation function



Generate a large set of 
potential lexical entries

V : Y ! {t, f}
Y all parses

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

xi sentence

Vi validation function

GENLEX(xi,Vi;⇤, ✓)

lexical generation function



Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

Get top parses
xi sentence

k beam size

GEN(xi;�) set of all parses



Get lexical entries from 
highest scoring valid 

parses

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

V validation function

LEX(y) set of lexical entries

�i(y) = �(xi, y)

MAXVi(Y ; ✓) = {y|y 2 Y ^ Vi(y)^
8y0 2 Y.Vi(y) =)

h✓,�i(y
0
)i  h✓,�i(y)i}



Update model’s lexicon

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

a. Set �G  GENLEX(xi,Vi;⇤, ✓),
� ⇤ [ �G

b. Let Y be the k highest scoring parses from

GEN(xi;�)

c. Select lexical entries from the highest scor-

ing valid parses:

�i  
S

y2MAXVi(Y ;✓) LEX(y)

d. Update lexicon: ⇤ ⇤ [ �i

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤



Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

a. Set Gi  MAXVi(GEN(xi;⇤); ✓)
and Bi  {e|e 2 GEN(xi;⇤) ^ ¬Vi(y)}

b. Construct sets of margin violating good and

bad parses:

Ri  {g|g 2 Gi ^ 9b 2 Bi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
Ei  {b|b 2 Bi ^ 9g 2 Gi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
c. Apply the additive update:

✓  ✓ + 1
|Ri|

P
r2Ri

�i(r)

� 1
|Ei|

P
e2Ei

�i(e)

Output: Parameters ✓ and lexicon ⇤



Re-parse and group all 
parses into ‘good’ and 

‘bad’ sets

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

a. Set Gi  MAXVi(GEN(xi;⇤); ✓)
and Bi  {e|e 2 GEN(xi;⇤) ^ ¬Vi(y)}

b. Construct sets of margin violating good and

bad parses:

Ri  {g|g 2 Gi ^ 9b 2 Bi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
Ei  {b|b 2 Bi ^ 9g 2 Gi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
c. Apply the additive update:

✓  ✓ + 1
|Ri|

P
r2Ri

�i(r)

� 1
|Ei|

P
e2Ei

�i(e)

Output: Parameters ✓ and lexicon ⇤

✓ weights

xi sentence

Vi validation function

GEN(xi;�) set of all parses

�i(y) = �(xi, y)

MAXVi(Y ; ✓) = {y|y 2 Y ^ Vi(y)^
8y0 2 Y.Vi(y) =)

h✓,�i(y
0
)i  h✓,�i(y)i}



For all pairs of ‘good’ 
and ‘bad’ parses, if their 

scores violate the 
margin, add each to 

‘right’ and ‘error’ sets 
respectively

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

a. Set Gi  MAXVi(GEN(xi;⇤); ✓)
and Bi  {e|e 2 GEN(xi;⇤) ^ ¬Vi(y)}

b. Construct sets of margin violating good and

bad parses:

Ri  {g|g 2 Gi ^ 9b 2 Bi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
Ei  {b|b 2 Bi ^ 9g 2 Gi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
c. Apply the additive update:

✓  ✓ + 1
|Ri|

P
r2Ri

�i(r)

� 1
|Ei|

P
e2Ei

�i(e)

Output: Parameters ✓ and lexicon ⇤

✓ weights

� margin

�i(y) = �(xi, y)

�i(y, y
0) = |�i(y)� �i(y

0)|1



Update towards 
violating ‘good’ parses 

and against violating ‘bad’ 
parses

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

a. Set Gi  MAXVi(GEN(xi;⇤); ✓)
and Bi  {e|e 2 GEN(xi;⇤) ^ ¬Vi(y)}

b. Construct sets of margin violating good and

bad parses:

Ri  {g|g 2 Gi ^ 9b 2 Bi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
Ei  {b|b 2 Bi ^ 9g 2 Gi

s.t. h✓,�i(g)��i(b)i < ��i(g, b)}
c. Apply the additive update:

✓  ✓ + 1
|Ri|

P
r2Ri

�i(r)

� 1
|Ei|

P
e2Ei

�i(e)

Output: Parameters ✓ and lexicon ⇤

✓ weights

�i(y) = �(xi, y)



Return grammar

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤

✓ weights

⇤ lexicon



Features and Initialization

Feature 
Classes

Lexicon 
Initialization

Initial 
Weights

• Parse: indicate lexical entry and combinator use!
• Logical form: indicate local properties of logical 

forms, such as constant co-occurrence

• Often use an NP list!
• Sometimes include additional, domain 

independent entries for function words

• Positive weight for initial lexical indicator 
features



Unified Learning Algorithm

• Two parts of the algorithm we still need to define!

• Depend on the task and supervision signal

V validation function

GENLEX(x,V;�, ✓)
lexical generation function

VV
GENLEXGENLEXGENLEX



Unified Learning Algorithm

Supervised
Supervised

V

GENLEX

GENLEXTemplate-based

Unification-based

Weakly Supervised

V
GENLEXTemplate-based



Supervised Learning

show me the afternoon flights from LA to boston

�x.flight(x) ^ during(x,AFTERNOON) ^ from(x, LA) ^ to(x,BOS)



Supervised Learning

show me the afternoon flights from LA to boston

�x.flight(x) ^ during(x,AFTERNOON) ^ from(x, LA) ^ to(x,BOS)

Parse structure is latent



Supervised Learning

Supervised
Supervised

V

GENLEX

GENLEXTemplate-based

Unification-based



Supervised Validation 
Function

• Validate logical form against gold label

Vi(y) =

(
true if LF (y) = zi
false else

y parse

zi labeled logical form

LF (y) logical form at the root of y



Supervised Template-based
GENLEX(x, z;⇤, ✓)

Sentence
Logical 
form

Lexicon Weights

Small notation abuse: 
take labeled logical 

form instead of 
validation function



Supervised Template-based

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

GENLEX(x, z;⇤, ✓)



Supervised Template-based 
GENLEX

• Use templates to constrain lexical entries 
structure!

• For example: from a small annotated dataset

�(!, {vi}n1 ).[! ` ADJ : �x.v1(x)]

�(!, {vi}n1 ).[! ` PP : �x.�y.v1(y, x)]

�(!, {vi}n1 ).[! ` N : �x.v1(x)]

�(!, {vi}n1 ).[! ` S\NP/NP : �x.�y.v1(x, y)]

. . .

[Zettlemoyer and Collins 2005]



Supervised Template-based 
GENLEX

�(!, {vi}n1 ).[! ` ADJ : �x.v1(x)]

�(!, {vi}n1 ).[! ` PP : �x.�y.v1(y, x)]

�(!, {vi}n1 ).[! ` N : �x.v1(x)]

�(!, {vi}n1 ).[! ` S\NP/NP : �x.�y.v1(x, y)]

. . .

Need lexemes to instantiate templates



Supervised Template-based

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

I want

a flight

flight

flight to new

. . .

All possible 
sub-strings

GENLEX(x, z;⇤, ✓)



Supervised Template-based

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

flight

to

NY C

I want

a flight

flight

flight to new

. . .

All logical 
constants from 

labeled logical form

GENLEX(x, z;⇤, ✓)



Supervised Template-based

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

flight

to

NY C

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .
Create 
lexemes

GENLEX(x, z;⇤, ✓)



Supervised Template-based

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

flight

to

NY C

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

GENLEX(x, z;⇤, ✓)



Fast Parsing with Pruning

• GENLEX outputs a large number of entries!

• For fast parsing: use the labeled logical form 
to prune!

• Prune partial logical forms that can’t lead to 
labeled form

I want a flight from New York to Boston on Delta
�x.from(x,NY C) ^ to(x,BOS) ^ carrier(x,DL)



. . . from New York to Boston . . .

PP/NP NP PP/NP NP
�x.�y.to(y, x) NY C �x.�y.to(y, x) BOS

> >
PP PP

�y.to(y,NY C) �y.to(y,BOS)

N\N
�f.�y.f(y) ^ to(y,BOS)

Fast Parsing with Pruning

I want a flight from New York to Boston on Delta
�x.from(x,NY C) ^ to(x,BOS) ^ carrier(x,DL)



. . . from New York to Boston . . .

PP/NP NP PP/NP NP
�x.�y.to(y, x) NY C �x.�y.to(y, x) BOS

> >
PP PP

�y.to(y,NY C) �y.to(y,BOS)

N\N
�f.�y.f(y) ^ to(y,BOS)

Fast Parsing with Pruning

I want a flight from New York to Boston on Delta
�x.from(x,NY C) ^ to(x,BOS) ^ carrier(x,DL)



. . . from New York to Boston . . .

PP/NP NP PP/NP NP
�x.�y.to(y, x) NY C �x.�y.to(y, x) BOS

> >
PP PP

�y.to(y,NY C) �y.to(y,BOS)

N\N
�f.�y.f(y) ^ to(y,BOS)

Fast Parsing with Pruning

I want a flight from New York to Boston on Delta
�x.from(x,NY C) ^ to(x,BOS) ^ carrier(x,DL)



. . . from New York to Boston . . .

PP/NP NP PP/NP NP
�x.�y.to(y, x) NY C �x.�y.to(y, x) BOS

> >
PP PP

�y.to(y,NY C) �y.to(y,BOS)

N\N
�f.�y.f(y) ^ to(y,BOS)

Fast Parsing with Pruning

I want a flight from New York to Boston on Delta
�x.from(x,NY C) ^ to(x,BOS) ^ carrier(x,DL)



No initial expert knowledge
Creates compact lexicons ✓

Language independent
Representation independent

Easily inject linguistic knowledge ✓
Weakly supervised learning ✓

Supervised Template-based 
GENLEX

Summary



Unification-based GENLEX

[Kwiatkowski et al. 2010]

• Automatically learns the templates!

- Can be applied to any language and many different 
approaches for semantic modeling!

• Two step process!

- Initialize lexicon with labeled logical forms!

- “Reverse” parsing operations to split lexical 
entries 



Unification-based GENLEX

For every labeled training example:

Initialize the lexicon with:

�x.flight(x) ^ to(x,BOS)

I want a flight to Boston

• Initialize lexicon with labeled logical forms

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)



Unification-based GENLEX

• Splitting lexical entries

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)

I want a flight ` S/(S|NP ) : �f.�x.flight(x) ^ f(x)

to Boston ` S|NP : �x.to(x,BOS)



Unification-based GENLEX

• Splitting lexical entries

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)

I want a flight ` S/(S|NP ) : �f.�x.flight(x) ^ f(x)

to Boston ` S|NP : �x.to(x,BOS)

Many possible 
category pairs

Many possible 
phrase pairs



Unification-based GENLEX
• Splitting CCG categories:!

1. Split logical form h to f and g s.t.!

or!

2. Infer syntax from logical form type

f(g) = h �x.f(g(x)) = h

S : �x.flight(x) ^ to(x,BOS)

�f.�x.flight(x) ^ f(x)

�x.to(x,BOS)

�y.�x.flight(x) ^ f(x, y)

BOS

. . .



Unification-based GENLEX
• Splitting CCG categories:!

1. Split logical form h to f and g s.t.!

or!

2. Infer syntax from logical form type

f(g) = h �x.f(g(x)) = h

S : �x.flight(x) ^ to(x,BOS)

�f.�x.flight(x) ^ f(x)

�x.to(x,BOS)

�y.�x.flight(x) ^ f(x, y)

BOS

. . .

S/NP :

NP :

S/(S|NP ) :

S|NP :

�f.�x.flight(x) ^ f(x)

�x.to(x,BOS)

S/(S|NP ) :

S|NP :



Unification-based GENLEX
• Split text and create all pairs

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)

I want

a flight to Boston

I want a flight

to Boston

. . .

�f.�x.flight(x) ^ f(x)

�x.to(x,BOS)

S/(S|NP ) :

S|NP :

�f.�x.flight(x) ^ f(x)

�x.to(x,BOS)

S/(S|NP ) :

S|NP :

S : �x.flight(x) ^ to(x,BOS)



Unification-based

Sentence
Logical 
form

Lexicon Weights

GENLEX(x, z;⇤, ✓)

1. Find highest scoring correct parse!

2. Find split that most increases score!

3. Return new lexical entries



Parameter Initialization

Compute co-occurrence (IBM Model 1) 
between words and logical constants

Initial score for new lexical entries: average 
over pairwise weights

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)

I want a flight to Boston ` S : �x.flight(x) ^ to(x,BOS)



Unification-based

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)



Unification-based

I want a flight to Boston

S
�x.flight(x) ^ to(x,BOS)

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries



Unification-based

I want a flight to Boston

S
�x.flight(x) ^ to(x,BOS)

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries

I want a flight to Boston

S/(S|NP ) S|NP
�f.�x.flight(x) ^ f(x) �x.to(x,BOS)



Unification-based

I want a flight to Boston

S
�x.flight(x) ^ to(x,BOS)

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries

I want a flight to Boston

S/(S|NP ) S|NP
�f.�x.flight(x) ^ f(x) �x.to(x,BOS)



Unification-based

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries

Iteration 2

I want a flight to Boston

S/(S|NP ) S|NP
�f.�x.flight(x) ^ f(x) �x.to(x,BOS)

>
S

�x.flight(x) ^ to(x,BOS)



to Boston

(S|NP )/NP NP
�y.�x.to(x, y) BOS

Unification-based

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

Iteration 2

I want a flight to Boston

S/(S|NP ) S|NP
�f.�x.flight(x) ^ f(x) �x.to(x,BOS)

>
S

�x.flight(x) ^ to(x,BOS)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries



to Boston

(S|NP )/NP NP
�y.�x.to(x, y) BOS

Unification-based

I want a flight to Boston
�x.flight(x) ^ to(x,BOS)

GENLEX(x, z;⇤, ✓)

Iteration 2

I want a flight to Boston

S/(S|NP ) S|NP
�f.�x.flight(x) ^ f(x) �x.to(x,BOS)

>
S

�x.flight(x) ^ to(x,BOS)

1. Find highest scoring 
correct parse!

2. Find splits that most 
increases score!

3. Return new lexical 
entries



Experiments

• Two database corpora:!

- Geo880/Geo250 [Zelle and Mooney 1996; Tang and Mooney 2001]!

- ATIS [Dahl et al. 1994]!

• Learning from sentences paired with logical 
forms!

• Comparing template-based and unification-
based GENLEX methods

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 2011]



Results

0

22.5

45

67.5

90

Geo880
ATIS Geo250 English

Geo250 Spanish

Geo250 Japanese

Geo250 Turkish

Template-based Unification-based Unification-based + Factored Lexicon

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 2011]



Templates Unification
No initial expert knowledge ✓

Creates compact lexicons ✓
Language independent ✓

Representation independent ✓
Easily inject linguistic knowledge ✓

Weakly supervised learning ✓

GENLEX Comparison



Templates Unification
No initial expert knowledge ✓

Creates compact lexicons ✓
Language independent ✓

Representation independent ✓
Easily inject linguistic knowledge ✓

Weakly supervised learning ✓ ?

GENLEX Comparison



Recap 
CCGs

CCG is fun

NP S\NP/ADJ ADJ

CCG �f.�x.f(x) �x.fun(x)
>

S\NP

�x.fun(x)
<

S

fun(CCG)

[Steedman 1996, 2000]



Recap 
Unified Learning Algorithm

• Online!

• 2 steps:!

- Lexical generation!

- Parameter update

Initialize ✓ using ⇤0 , ⇤ ⇤0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)

Step 2: (Update parameters)

Output: Parameters ✓ and lexicon ⇤



Recap 
Learning Choices

Validation Function Lexical Generation 
Procedure

• Indicates correctness 
of a parse y!

• Varying     allows for 
differing forms of 
supervision!

• Given:!
sentence!
validation function!
lexicon !
parameters!

• Produce a overly general 
set of lexical entries

V : Y ! {t, f} GENLEX(x,V;⇤, ✓)

V V

✓
⇤

x



Unified Learning Algorithm

Supervised
Supervised

V

GENLEX

GENLEXTemplate-based

Unification-based

Weakly Supervised

V
GENLEXTemplate-based



Weak Supervision

What is the largest state that borders Texas?

New Mexico

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision

What is the largest state that borders Texas?

New Mexico

at the chair, move forward three steps past the sofa

[Clarke et al. 2010; Liang et al. 2011; Chen and Mooney 2011; Artzi and Zettlemoyer 2013b]



Weak Supervision

What is the largest state that borders Texas?

New Mexico

at the chair, move forward three steps past the sofa

Execute the logical form and observe the result



Weakly Supervised 
Validation Function

y 2 Y parse

ei 2 E available execution result

EXEC(y) : Y ! E
logical form at the root of y

[Artzi and Zettlemoyer 2013b]

Vi(y) =

(
true if EXEC(y) t ei
false else



Weakly Supervised 
Validation Function

y 2 Y parse

ei 2 E available execution result

EXEC(y) : Y ! E
logical form at the root of y

Domain-specific 
execution function: 
SQL query engine, 
navigation robot 

Vi(y) =

(
true if EXEC(y) t ei
false else



Weakly Supervised 
Validation Function

y 2 Y parse

ei 2 E available execution result

EXEC(y) : Y ! E
logical form at the root of y

Domain-specific 
execution function: 
SQL query engine, 
navigation robot 

Vi(y) =

(
true if EXEC(y) t ei
false else

Depends on 
supervision



Weakly Supervised 
Validation Function

y 2 Y parse

ei 2 E available execution result

EXEC(y) : Y ! E
logical form at the root of y

Domain-specific 
execution function: 
SQL query engine, 
navigation robot 

In general: execution function is a natural 
part of a complete system

Vi(y) =

(
true if EXEC(y) t ei
false else

Depends on 
supervision



Weakly Supervised 
Validation Function

Example EXEC(y):

Robot moving in an environment



Complete 
Demonstration

Example supervision:

Example EXEC(y):

Robot moving in an environment

Weakly Supervised 
Validation Function



Complete 
Demonstration

Validate all steps

Example supervision:

Example EXEC(y):

Robot moving in an environment

Weakly Supervised 
Validation Function



Final State

Validate only last 
position

Example supervision:

Example EXEC(y):

Robot moving in an environment

Weakly Supervised 
Validation Function



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

flight

to

NY C

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

[Artzi and Zettlemoyer 2013b]



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york
�x.flight(x) ^ to(x,NY C)

flight

to

NY C

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

No access to 
labeled logical form



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

flight, from, to,

ground transport, dtime, atime,

NY C,BOS,LA, SEA, . . .

Use all logical 
constants in the 
system instead



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

flight, from, to,

ground transport, dtime, atime,

NY C,BOS,LA, SEA, . . .

Use all logical 
constants in the 
system instead

Many more 
lexemes

Huge number of 
lexical entries



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

flight, from, to,

ground transport, dtime, atime,

NY C,BOS,LA, SEA, . . .

Model

Parse to prune 
generated lexicon

Huge number of 
lexical entries



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

flight, from, to,

ground transport, dtime, atime,

NY C,BOS,LA, SEA, . . .

Model

Parse to prune 
generated lexicon

Intractable

Huge number of 
lexical entries



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

(flight, {flight})
(I want, {})
(flight to new, {to,NY C})
. . .

I want

a flight

flight

flight to new

. . .

flight ` N : �x.flight(x)

I want ` S/NP : �x.x

flight to new : S\NP/NP : �x.�y.to(x, y)

. . .

Initialize 
templates

?



Weakly Supervised
GENLEX(x,V;⇤, ✓)

• Gradually prune lexical entries using a coarse-
to-fine semantic parsing algorithm!

• Transition from coarse to fine defined by 
typing system



Coarse Ontology
flight

<fl,t>

, from
<fl,<loc,t>>

, to
<fl,<loc,t>>

,

ground transport
<gt,t>

, dtime
<tr,<ti,t>>

, atime
<tr,<ti,t>>

,

NY C
ci

, BOS
ci

, JFK
ap

, LAS
ap

, . . .

e

fla
fl

tr

gt

t



Coarse Ontology
flight

<fl,t>

, from
<fl,<loc,t>>

, to
<fl,<loc,t>>

,

ground transport
<gt,t>

, dtime
<tr,<ti,t>>

, atime
<tr,<ti,t>>

,

NY C
ci

, BOS
ci

, JFK
ap

, LAS
ap

, . . .

flight<e,t>, from<e,<e,t>>, to<e,<e,t>>,

ground transport<e,t>, dtime<e,<e,t>>, atime<e,<e,t>>,

NY Ce, BOSe, LAe, SEAe, . . .

Generalize types

e

fla
fl

tr

gt

t

flight<fl,t>

flight<e,t>

fl ! e

t ! t



Coarse Ontology

flight<e,t>, from<e,<e,t>>, to<e,<e,t>>,

ground transport<e,t>, dtime<e,<e,t>>, atime<e,<e,t>>,

NY Ce, BOSe, LAe, SEAe, . . .

c1<e,t>, c2<e,<e,t>>, c3e, . . .

Merge identically 
typed constants 

Generalize types

flight
<fl,t>

, from
<fl,<loc,t>>

, to
<fl,<loc,t>>

,

ground transport
<gt,t>

, dtime
<tr,<ti,t>>

, atime
<tr,<ti,t>>

,

NY C
ci

, BOS
ci

, JFK
ap

, LAS
ap

, . . .

e

fla
fl

tr

gt

t



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

I want

a flight

flight

flight to new

. . .

c1<e,t>

c2<e,<e,t>>

c3e

. . .

All possible 
sub-strings



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

I want

a flight

flight

flight to new

. . .

c1<e,t>

c2<e,<e,t>>

c3e

. . .

All possible 
sub-strings

Create 
lexemes

(flight, {c1})
(I want, {})
(flight to new, {c2})
. . .



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

I want

a flight

flight

flight to new

. . .

c1<e,t>

c2<e,<e,t>>

c3e

. . .

flight ` N : �x.c1(x)

I want ` S/NP : �x.x

flight to new ` S\NP/NP : �x.�y.c2(x, y)

. . .

(flight, {c1})
(I want, {})
(flight to new, {c2})
. . .

Initialize 
templates



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

I want

a flight

flight

flight to new

. . .

c1<e,t>

c2<e,<e,t>>

c3e

. . .

(flight, {c1})
(I want, {})
(flight to new, {c2})
. . .

flight ` N : �x.c1(x)

I want ` S/NP : �x.x

flight to new ` S\NP/NP : �x.�y.c2(x, y)

. . .

Coarse 
constants

Initialize 
templates



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york
flight ` N : �x.c1(x)

I want ` S/NP : �x.x

flight to new ` S\NP/NP : �x.�y.c2(x, y)

. . .

Keep only lexical entries that participate in 
complete parses, which score higher than the 

current best valid parse by a margin

Prune by 
parsing



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york
flight ` N : �x.c1(x)

I want ` S/NP : �x.x

flight to new ` S\NP/NP : �x.�y.c2(x, y)

. . .

Keep only lexical entries that participate in 
complete parses, which score higher than the 

current best valid parse by a margin

Prune by 
parsing



Weakly Supervised
GENLEX(x,V;⇤, ✓)

I want a flight to new york

Replace all coarse constants with 
all similarly typed constants

flight ` N : �x.flight(x)

flight ` N : �x.ground transport(x)

flight ` N : �x.nonstop(x)

flight ` N : �x.connecting(x)

. . .

flight ` N : �x.c1(x)

. . .



Weak Supervision 
Requirements

• Know how to act given a logical form!

• A validation function !

• Templates for lexical induction



Experiments

• Situated learning with joint inference!

• Two forms of validation!

• Template-based

Instruction:

Demonstration:
at the chair, move forward three steps past the sofa

GENLEX(x,V;⇤, ✓)

[Artzi and Zettlemoyer 2013b]



Results

0

16

32

48

64

80

Single Sentence Sequence Logical Form

51.05

58.05

78.63

44

54.63

77.6

Final State Validation
Trace Validation



Unified Learning Algorithm 
Extensions

• Loss-sensitive learning!

- Applied to learning from conversations!

• Stochastic gradient descent!

- Approximate expectation computation

[Artzi and Zettlemoyer 2011; Zettlemoyer and Collins 2005]



ModelingParsing

!

• Structured perceptron!

• A unified learning algorithm!

• Supervised learning!

• Weak supervision

Learning



Show me all papers about semantic parsing

�x.paper(x) ^ topic(x, SEMPAR)

Parsing with CCG

Modeling



Modeling

Show me all papers about semantic parsing

�x.paper(x) ^ topic(x, SEMPAR)

Parsing with CCG

What should these logical forms look like?

But why should we care?



Modeling Considerations

• Capture language complexity!

• Satisfy system requirements!

• Align with language units of meaning

Modeling is key to learning compact 
lexicons and high performing models



LearningParsing

!

• Semantic modeling for:!
- Querying databases!
- Referring to physical objects!
- Executing instructions!

Modeling



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

[Zettlemoyer and Collins 2005]



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Noun Phrases

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Verbs

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Nouns

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Prepositions

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Superlatives

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Determiners

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



BorderState

Querying Databases

Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

State1 State2
WA OR

WA ID

CA OR

CA NV

CA AZ

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert COQuestions

What is the capital of Arizona?!

How many states border California?!

What is the largest state?



Referring to DB Entities

Nouns

Noun phrases

Superlatives

Prepositions!
Verbs

Typing (i.e., column headers)

Select single DB entities

Ordering queries

Relations between entities



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Noun Phrases
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

WA

Washington

Florida

The Sunshine State

Noun phrases name 
specific entities

FL



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Noun Phrases
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

WA

Washington

Florida

The Sunshine State

Noun phrases name 
specific entities

FL

WA

FL

e-typed 
entities



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Noun Phrases
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Washington

Noun phrases name 
specific entities

NP
WA

The Sunshine State
NP
FL



Verb Relations
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ

Nevada borders California
border(NV,CA)

Verbs express relations 
between entities



Verb Relations
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ

Nevada borders California
border(NV,CA)

true

Verbs express relations 
between entities



Verb Relations
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Nevada borders California

NP S\NP/NP NP

NV �x.�y.border(y, x) CA

>
S\NP

�y.border(y, CA)

<
S

border(NV,CA)



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Nouns
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

state

mountain

�x.state(x)

�x.mountain(x)

Nouns are functions 
that define entity type



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Nouns
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

state

mountain

�x.state(x)

�x.mountain(x)

Nouns are functions 
that define entity type

{ }WA AL AK, , ,...

ANTEROBIANCA{ , },...
!

functions 
define sets

e ! t



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Nouns

state

mountain

Nouns are functions 
that define entity type

N

�x.state(x)

N

�x.mountain(x)



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Prepositions

mountain in Colorado

Prepositional phrases are 
conjunctive modifiers

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Prepositions
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Prepositional phrases are 
conjunctive modifiers

mountain
�x.mountain(x)

ANTEROBIANCA{ ,
}
,
...,RAINIER



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Prepositions

mountain in Colorado

Prepositional phrases are 
conjunctive modifiers

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

�x.mountain(x)^
in(x,CO)

ANTEROBIANCA{ , }



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Prepositions

mountain in Colorado

N PP/NP NP
�x.mountain(x) �y.�x.in(x, y) CO

>
PP

�x.in(x,CO)

N\N
�f.�x.f(x) ^ in(x,CO)

<
N

�x.mountain(x) ^ in(x,CO)



Function Words
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ

state that borders California
�x.state(x) ^ border(x,CA)

{ }OR NV AZ, ,

Certain words are used to 
modify syntactic roles



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Function Words

state that borders California

N PP/(S\NP ) S\NP/NP NP

NV �f.f �x.�y.border(y, x) CA

>
S\NP

�y.border(y, CA)

>
PP

�y.border(y, CA)

N\N
�f.�y.f(y) ^ border(y, CA)

<
N

�x.state(x) ^ (x,CA)



Function Words
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ

Certain words are used to 
modify syntactic roles

Other common function 
words: which, of, for, are, is, 
does, please

• May have other senses 
with semantic meaning!

• May carry content in 
other domains



Definite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Definite determiner 
selects the single members 
of a set when such exists

the mountain in Washington

◆ : (e ! t) ! e



Definite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

RAINIER{ }

Definite determiner 
selects the single members 
of a set when such exists

mountain in Washington
�x.mountain(x) ^ in(x,WA)

◆ : (e ! t) ! e



Definite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

RAINIER

Definite determiner 
selects the single members 
of a set when such exists

the mountain in Washington

◆ : (e ! t) ! e

◆x.mountain(x) ^ in(x,WA)

{ } RAINIER



Definite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Definite determiner 
selects the single members 
of a set when such exists

the mountain in Colorado

◆ : (e ! t) ! e

{
◆x.mountain(x) ^ in(x,CO)

ANTEROBIANCA{ , } ?



Definite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Definite determiner 
selects the single members 
of a set when such exists

the mountain in Colorado

◆ : (e ! t) ! e

{
◆x.mountain(x) ^ in(x,CO)

ANTEROBIANCA{ , }
No information to disambiguate



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Definite Determiners

the mountain in Colorado·
NP/N ·

�f.◆x.f(x) ·
N

�x.mountain(x) ^ in(x,CO)

>
NP

◆x.mountain(x) ^ in(x,CO)



Indefinite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Indefinite determiners are  
select any entity from a 
set without a preference

state with a mountain

A : (e ! t) ! e

[Steedman 2011; Artzi and Zettlemoyer 2013b]

�x.state(x) ^ in(Ay.mountain(y), x)



Indefinite Determiners
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

Indefinite determiners are  
select any entity from a 
set without a preference

A : (e ! t) ! e

m

Exists
[Steedman 2011; Artzi and Zettlemoyer 2013b]

�x.state(x) ^ in(Ay.mountain(y), x)

�x.state(x) ^ 9y.mountain(y) ^ in(y, x)

state with a mountain



Indefinite Determiners

state with a mountain

N PP/NP NP/N N

�x.state(x) �x.�y.in(x, y) �f.Ax.f(x) �x.mountain(x)

>
NP

Ax.mountain(x)

>
PP

�y.(Ax.mountain(x), y)

N\N
�f.�y.f(y) ^ (Ax.mountain(x), y)

<
N

�y.state(y) ^ (Ax.mountain(x), y)



Indefinite Determiners
a

PP\(PP/NP )/N
�f.�g.�y.9x.g(x, y) ^ f(x)

a

NP/N

�f.Ax.f(x)

Using the indefinite quantifier simplifies CCG 
handling of the indefinite determiner

a

S\NP\(S\NP/NP )/N
�f.�g.�y.9x.g(x, y) ^ f(x)

a

S\(S\NP )/N
�f.�g.�y.9x.g(x, y) ^ f(x)



Superlatives
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Superlatives select optimal 
entities according to a measure

the largest state
argmax(�x.state(x),�y.pop(y))

AL 3.9

AK 0.4

Seattle 2.7

San Francisco 4.1

NY 17.5

IL 11.4

Min or max ... over this 
set

... according to 
this measure

{
}

WA ,
...

AL

AK

,
,



Superlatives
State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Superlatives select optimal 
entities according to a measure

the largest state
argmax(�x.state(x),�y.pop(y))

CA
AL 3.9

AK 0.4

Seattle 2.7

San Francisco 4.1

NY 17.5

IL 11.4

Min or max ... over this 
set

... according to 
this measure



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Superlatives

the largest state

NP/N N

�f.argmax(�x.f(x),�y.pop(y)) �x.state(x)
>

NP

argmax(�x.state(x),�y.pop(y))



State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Superlatives

the most populated state

NP/N/N N N

�g.�f.argmax(�x.f(x),�y.g(y)) �x.pop(x) �x.state(x)

>
NP/N

�f.argmax(�x.f(x),�y.pop(y))

>
NP

argmax(�x.state(x),�y.pop(y))



Representing Questions
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZRepresent questions as 
the queries that generate 
their answers

Which mountains are in Arizona?



Representing Questions
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ
Which mountains are in Arizona? Represent questions as 

the queries that generate 
their answers

Reflects the query SQL

SELECT Name FROM Mountains
WHERE State == AZ



Representing Questions
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZRepresent questions as 
the queries that generate 
their answers

Reflects the query SQL

Which mountains are in Arizona?

�x.mountain(x) ^ in(x,AZ)



Representing Questions
Mountains
Name State

Bianca CO

Antero CO

Rainier WA

Shasta CA

Wrangel AK

Sill CA

Bona AK

Elbert CO

State
Abbr. Capital Pop.

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Border
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZRepresent questions as 
the queries that generate 
their answers

Reflects the query SQL

How many states border California?

count(�x.state(x) ^ border(x,CA))



DB Queries

So Far

Next

• Refer to entities in a database!
• Query over type of entities, order and other 

database properties

• How does this approach hold for physical 
objects?!

• What do we need to change? Add?



Referring to Real World 
Objects

[Matuszek et al. 2012a]



Referring to Real World 
Objects

all the arches except the green arch



Referring to Real World 
Objects

all the arches except the green arch



Referring to Real World 
Objects

the blue triangle and the green arch



Referring to Real World 
Objects

the blue triangle and the green arch



Plurality

arches

{ , , },
�x.arch(x)



Plurality

arches

{ , , },
the arches

�x.arch(x)

◆x.arch(x)



Plurality

blue blocks

{ , }
brown block

{ }

�x.blue(x) ^ block(x)

�x.brown(x) ^ block(x)



Plurality
• All entities are sets!

• Space of entities includes 
singletons and sets of 
multiple objects



Plurality

Cognitive evidence 
for sets being a 
primitive type

[Scontras et al. 2012]

• All entities are sets!

• Space of entities includes 
singletons and sets of 
multiple objects



Plurality
Plurality is a modifier and 
entities are defined to be 
sets.



Plurality
Plurality is a modifier and 
entities are defined to be 
sets.

arch
�x.arch(x) ^ sg(x)



Plurality
Plurality is a modifier and 
entities are defined to be 
sets.

arch
�x.arch(x) ^ sg(x)

{
}

,{ }{ },
{ }{ },



,...}

Plurality
Plurality is a modifier and 
entities are defined to be 
sets.

arches

{{
�x.arch(x) ^ plu(x)

, , ,
{ , }

},



Plurality and Determiners
Definite determiner must 
select a single set. E.g., 
heuristically select the 
maximal set.

the arches

{ }
◆x.arch(x) ^ plu(x)

{ , , },



Adjectives
Adjectives are conjunctive 
modifiers

blue objects
�x.blue(x) ^ obj(x) ^ plu(x)



Adjectives
Adjectives are conjunctive 
modifiers

blue objects

{{ ,
�x.blue(x) ^ obj(x) ^ plu(x)

}}



DBs and Physical Objects

• Describe and refer to entities!

• Ask about objects and relations between 
them!

• Next: move into more dynamic scenarios

States

Abbr. Capital Pop.
AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 17.5

IL Springfield 11.4

Borders
State1 State2

WA OR

WA ID

CA OR

CA NV

CA AZ



Constrain sets

Specific entities

Queries to generate response

Sets of entities

Beyond Queries

Nouns

Prepositional phrases!
Adjectives

Noun phrases

Questions



Beyond Queries

Works well for natural language interfaces for DBs

How can we use this approach for other domains?

Constrain sets

Specific entities

Queries to generate response

Sets of entitiesNouns

Prepositional phrases!
Adjectives

Noun phrases

Questions



Procedural Representations

go forward along the stone hall to the 
intersection with a bare concrete hall

V erify(front : GRAV EL HALL)
Travel()
V erify(side : CONCRETE HALL)

[Chen and Mooney 2011]

• Common approach to represent 
instructional language!

• Natural for executing commands



• Common approach to represent 
instructional language!

• Natural for executing commands

Procedural Representations

leave the room and go right
do seq(verify(room(current loc)),

move to(unique thing(�x.equals(distance(x), 1))),

move to(right loc))

[Matuszek et al. 2012b]



• Common approach to represent 
instructional language!

• Natural for executing commands

Procedural Representations

Click Start, point to Search, and the click For Files and 
Folders. In the Search for box, type “msdownld.tmp”.

LEFT CLICK(Start)

LEFT CLICK(Search)

. . .
TY PE INFO(Search for:, “msdownld.tmp”)

[Branavan et al. 2009, Branavan et al. 2010]



Procedural Representations

• Poor generalization of learned models!

• Difficult to capture complex language

Dissonance between structure of 
semantics and language



Spatial and Instructional Language

Name objects

Instructions to execute 

Davidsonian eventsVerbs

Sets of eventsImperatives

Constrain sets

Specific entities

Sets of entitiesNouns

Prepositional phrases!
Adjectives

Noun phrases



Modeling Instructions

Describing an 
environment

Executing 
instructions

[Artzi and Zettlemoyer 2013b]



Modeling Instructions

Describing an 
environment

Executing 
instructions

Agent



Modeling Instructions

• Model actions and imperatives!

• Consider how the state of the agent influences its 
understanding of language

Describing an 
environment

Executing 
instructions

Agent



Modeling Instructions

place your back against the 
wall of the t intersection!

turn left!

go forward along the pink 
flowered carpet hall two 
segments to the 
intersection with the brick 
hall



Instructional Environment 
1 2 3 4 5

1

2

3

4

5

• Maps are graphs of 
connected positions!

• Positions have properties and 
contain objects



Instructional Environment 
1 2 3 4 5

1

2

3

4

5

• Agent can move forward, 
turn right and turn left!

• Agent perceives clusters of 
positions !

• Clusters capture objects

Agent



1 2 3 4 5

1

2

3

4

5

Instructional Environment 

• Agent can move forward, 
turn right and turn left!

• Agent perceives clusters of 
positions !

• Clusters capture objects
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• Clusters capture objects



Instructional Environment 
1 2 3 4 5

1
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3
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• Agent can move forward, 
turn right and turn left!

• Agent perceives clusters of 
positions !

• Clusters capture objects



Instructional Environment 
1 2 3 4 5

1

2

3

4

5

• Agent can move forward, 
turn right and turn left!

• Agent perceives clusters of 
positions !

• Clusters capture objects



Instructional Environment 
1 2 3 4 5

1

2

3

4

5

• Refer to objects similarly to 
our previous domains!

• “Query” the world



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

chair

�x.chair(x)

{ }

Nouns denote sets of 
objects



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

Definite determiner 
selects a single entity

◆x.chair(x)



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

{ }
◆ : (e ! t) ! e

Definite determiner 
selects a single entity



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

Definite determiner 
selects a single entity



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

Definite determiner 
selects a single entity

Fail?



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

Must disambiguate to 
select a single entity

Definite determiner 
selects a single entity



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

Definite determiner 
depends on agent state

Agent

Definite determiner 
selects a single entity



Grounded Resolution of 
Determiners

1 2 3 4 5

1

2

3

4

5

the chair

◆x.chair(x)

Definite determiner 
depends on agent state

Agent

{ },

Definite determiner 
selects a single entity



Modeling Instructions

Events taking 
place in the 

world

Events refer to 
environment

Implicit 
requests



Modeling Instructions

Events taking 
place in the 

world

Events refer to 
environment

walk forward twice

Implicit 
requests



Modeling Instructions

Events taking 
place in the 

world

Events refer to 
environment

Implicit 
requests

move twice to the chair



Modeling Instructions

Events taking 
place in the 

world

Events refer to 
environment

Implicit 
requests

at the chair, turn right

need to 
move first



Davidsonian Event Semantics

• Actions in the world are constrained by 
adverbial modifiers!

• The number of such modifiers is flexible

Adverbial modification is thus seen to be logically on a par 
with adjectival modification: what adverbial clauses modify is 

not verbs, but the events that certain verbs introduce.

Davidson 1969 (quoted in Maienborn et al. 2010)

[Davidson 1967]



Davidsonian Event Semantics

• Use event variable to represent events !

• Verbs describe events like nouns describe entities!

• Adverbials are conjunctive modifiers

Vincent shot Marvin in the car accidentally

[Davidson 1967]

9a.shot(a, V INCENT,MARV IN)^
in(a, ◆x.car(x)) ^ ¬intentional(a)



Neo-Davidsonian Event 
Semantics

Vincent shot Marvin
9a.shot(a, V INCENT,MARV IN)

Active

[Parsons 1990]



Neo-Davidsonian Event 
Semantics

Vincent shot Marvin

Marvin was shot by Vincent

9a.shot(a, V INCENT,MARV IN)

Active

Passive

[Parsons 1990]



Neo-Davidsonian Event 
Semantics

Vincent shot Marvin

Marvin was shot (by Vincent) Agent 
optional in 

passive

9a.shot(a, V INCENT,MARV IN)

Active

Passive

[Parsons 1990]



Neo-Davidsonian Event 
Semantics

Vincent shot Marvin

Marvin was shot (by Vincent) Agent 
optional in 

passive9a.shot(a,MARV IN)

9a.shot(a, V INCENT,MARV IN)

Active

Passive

[Parsons 1990]



Neo-Davidsonian Event 
Semantics

Vincent shot Marvin

Marvin was shot (by Vincent) Agent 
optional in 

passive

Can we represent such distinctions without 
requiring different arity predicates?

9a.shot(a,MARV IN)

9a.shot(a, V INCENT,MARV IN)

Active

Passive

[Parsons 1990]



Neo-Davidsonian Event 
Semantics

• Separation between semantic and syntactic roles!

• Thematic roles captured by conjunctive predicates

[Parsons 1990]

9a.shot(a) ^ agent(a, V INCENT ) ^ patient(a,MARV IN)

Vincent shot Marvin
9a.shot(a, V INCENT,MARV IN)



Neo-Davidsonian Event 
Semantics

• Decomposition to conjunctive modifiers 
makes incremental interpretation simpler!

• Shallow semantic structures: no need to 
modify deeply embedded variables

[Parsons 1990]

Vincent shot Marvin in the car accidentally

9a.shot(a) ^ agent(a, V INCENT )^
patient(a,MARV IN) ^ in(a, ◆x.car(x)) ^ ¬intentional(a)



Neo-Davidsonian Event 
Semantics

9a.shot(a) ^ agent(a, V INCENT )^
patient(a,MARV IN) ^ in(a, ◆x.car(x)) ^ ¬intentional(a)

Without events:

shot(V INCENT,MARV IN, ◆x.car(x), INTENTIONAL)

• Decomposition to conjunctive modifiers 
makes incremental interpretation simpler!

• Shallow semantic structures: no need to 
modify deeply embedded variables

[Parsons 1990]



Representing Imperatives

move forward past the sofa to the chair



Representing Imperatives

move forward past the sofa to the chair



Final positionType

Representing Imperatives

Direction Intermediate 
position

move forward past the sofa to the chair



Final positionType

Representing Imperatives

• Imperatives define actions to be executed!

• Constrained by adverbials!

• Similar to how nouns are defined

Direction Intermediate 
position

move forward past the sofa to the chair



Final positionType

Representing Imperatives

• Imperatives are sets of actions!

• Just like nouns: functions from events to truth

Direction Intermediate 
position

move forward past the sofa to the chair

f : ev ! t



Final positionType

Representing Imperatives

Direction Intermediate 
position

move forward past the sofa to the chair

Given a set, what do we actually execute?



Final positionType

Representing Imperatives

• Need to select a single action and execute it!

• Reasonable solution: select simplest/shortest

Direction Intermediate 
position

move forward past the sofa to the chair

Given a set, what do we actually execute?



Modeling Instructions
1 2 3 4 5

1

2

3

4

5

move

• Imperatives are sets of 
events!

• Events are sequences of 
identical actions

�a.move(a)

{ }, ,



Modeling Instructions
1 2 3 4 5

1

2

3

4

5

Disambiguate by preferring 
shorter sequences

• Imperatives are sets of 
events!

• Events are sequences of 
identical actions

move
�a.move(a)

{ }, ,



Modeling Instructions
1 2 3 4 5

1

2

3

4

5

move twice

{ }
�a.move(a) ^ len(a, 2)

Events can be modified 
by adverbials



Modeling Instructions
1 2 3 4 5

1

2

3

4

5

go to the chair

{ }

Events can be modified 
by adverbials

�a.move(a)^
to(a, ◆x.chair(x))



Modeling Instructions

Treatment of events and their adverbials is similar 
to nouns and prepositional phrases

go to the chair

S AP/NP NP/N N

�a.move(a) �x.�a.to(a, x) �f.◆x.f(x) �x.chair(x)

>
NP

◆x.chair(x)

<
AP

�a.to(a, ◆x.chair(x))

S\S
�f.�a.f(a) ^ to(a, ◆x.chair(x))

<
S

�a.move(a) ^ to(a, ◆x.chair(x))



Modeling Instructions
1 2 3 4 5

1

2

3

4

5

Dynamic Models

Implicit Actions



Dynamic Models
1 2 3 4 5

1

2

3

4

5

move until you reach the chair

�a.move(a)^
post(a, intersect(◆x.chair(x), you))

World model changes 
during execution



Dynamic Models
1 2 3 4 5

1

2

3

4

5

move until you reach the chair

�a.move(a)^
post(a, intersect(◆x.chair(x), you))

4

3

World model changes 
during execution



Dynamic Models
1 2 3 4 5

1

2

3

4

5

move until you reach the chair

�a.move(a)^
post(a, intersect(◆x.chair(x), you))

4

3

World model changes 
during execution

Never 

interse
cts



Dynamic Models
1 2 3 4 5

1

2

3

4

5

move until you reach the chair

�a.move(a)^
post(a, intersect(◆x.chair(x), you))

World model changes 
during execution

Update model to reflect state change



Dynamic Models
1 2 3 4 5

1

2

3

4

5

move until you reach the chair

�a.move(a)^
post(a, intersect(◆x.chair(x), you))

2

3

World model changes 
during execution

Update model to reflect state change

Update



Implicit Actions
1 2 3 4 5

1

2

3

4

5

at the chair, turn left

Consider action assignments 
with prefixed implicit actions

�a.turn(a) ^ dir(a, left)^
pre(a, intersect(◆x.chair(x), you))



Implicit Actions
1 2 3 4 5

1

2

3

4

5

at the chair, turn left

Consider action assignments 
with prefixed implicit actions

�a.turn(a) ^ dir(a, left)^
pre(a, intersect(◆x.chair(x), you))



Implicit Actions
1 2 3 4 5

1

2

3

4

5

at the chair, turn left

Consider action assignments 
with prefixed implicit actions

�a.turn(a) ^ dir(a, left)^
pre(a, intersect(◆x.chair(x), you))

Implicit actions



Experiments

• Situated learning with joint inference!

• Two forms of validation!

• Template-based

Instruction:

Demonstration:
at the chair, move forward three steps past the sofa

GENLEX(x,V;⇤, ✓)

[Artzi and Zettlemoyer 2013b]



Results 
SAIL Corpus - Cross Validation

0

14

28

42

56

70

Single Sentence Sequence

31.93

65.28

30.9

64.25

Chen and Mooney 2011
Chen 2012
Kim and Mooney 2012
Final State Validation
Trace Validation
Kim and Mooney 2013

[Artzi and Zettlemoyer 2013b]



More Reading about 
Modeling

Type-Logical Semantics!
by Bob Carpenter

[Carpenter 1997]



Today

Modeling Best practices for semantics design

Parsing Combinatory Categorial Grammars

Learning Unified learning algorithm



Looking Forward



Looking Forward: Scale

a new variable: �p�x�y.p(x, y). The final
semantics for a lexical entry is then constructed
by substituting rD for p, or more formally, by a
function application Sem(rD). The event space
for Syn consists of all syntactic categories in
UBL’s output lexicon, and W ranges over R.

LEXTENDER’s model for Sem and Syn are
Naı̈ve Bayes classifiers (NBC), with features for
the part-of-speech for rT (taken from a POS tag-
ger), the suffix of rT , the number of arguments of
rD, and the argument types of rD. For Syn, we
add a feature for the predicted value of Sem. For
W , we use a linear regression model whose fea-
tures are the score from MATCHER, the probabili-
ties from the Syn and Sem NBC models, and the
average weight of all lexical entries in UBL with
matching syntax and semantics. Using the pre-
dictions from these models, LEXTENDER extends
UBL’s learned lexicon with all possible lexical en-
tries with their predicted weights, although typi-
cally only a few lexical entries have high enough
weight to make a difference during parsing. Prun-
ing entries with low weights could improve the
memory and time requirements for parsing, but
these were not an issue in our experiments, so we
did not investigate this further.

5 Experiments

We conducted experiments to test the ability of
MATCHER and LEXTENDER to produce a se-
mantic parser for Freebase. We first analyze
MATCHER on the task of finding matches between
Freebase relations and textual relations. We then
compare the performance of the semantic parser
learned by UBL with its extension provided by
LEXTENDER on a dataset of English questions
posed to Freebase.

5.1 Experimental Setup

Freebase (Bollacker et al., 2008) is a free,
online, user-contributed, relational database
(www.freebase.com) covering many different
domains of knowledge. The full schema and
contents are available for download. The “Free-
base Commons” subset of Freebase, which is our
focus, consists of 86 domains, an average of 25
relations per domain (total of 2134 relations),
and 615,000 known instances per domain (53
million instances total). As a reference point,
the GeoQuery database — which is a standard
benchmark database for semantic parsing —

Examples

1. What are the neighborhoods in New
York City?
�x . neighborhoods(new york, x)

2. How many countries use the rupee?
count(x) . countries used(rupee, x)

3. How many Peabody Award winners are
there?
count(x) . 9y . award honor(y) ^

award winner(y, x) ^
award(y, peabody award)

Figure 2: Example questions with their logical
forms. The logical forms make use of Freebase
symbols as logical constants, as well as a few ad-
ditional symbols such as count and argmin, to
allow for aggregation queries.

contains a single domain (geography), 8 relations,
and 880 total instances.

Our dataset contains 917 questions (on aver-
age, 6.3 words per question) and a meaning repre-
sentation for each question written in a variant of
lambda calculus2. 81 domains are represented in
the data set, and the lambda calculus forms contain
635 distinct Freebase relations. The most com-
mon domains, film and business, each took
up no more than 6% of the overall dataset. Sev-
eral examples are listed in Fig. 2. The ques-
tions were provided by two native English speak-
ers. No restrictions were placed on the type of
questions they should produce, except that they
should produce questions for multiple domains.
By inspection, a large majority of the questions
appear to be answerable from Freebase, although
no instructions were given to restrict questions
to this sort. We also created a dataset of align-
ments from these annotated questions by creating
an alignment for each Freebase relation mentioned
in the logical form for a question, paired with a
manually-selected word from the question.

5.2 Alignment Tests

We measured the precision and recall of
MATCHER’s output against the manually la-
beled data. Let M be the set of (rT , rD) matches
produced by the system, and G the set of matches
in the gold-standard manual data. We define

2The data is available from the second author’s website.

Goal

Challenges

See

Answer any question 
posed to large, community 
authored databases !

- Large domains!
- Scalable algorithms!
- Unseen words and 

concepts!

Cai and Yates 2013a, 2013b



Looking Forward: Code

Goal

Challenges

See

Program using natural 
language !

- Data !
- Complex intent!
- Complex output!

Kushman and Barzilay 
2013; Lei et al. 2013

From Natural Language Specifications to Program Input Parsers

Tao Lei, Fan Long, Regina Barzilay, and Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{taolei, fanl, regina, rinard}@csail.mit.edu

Abstract

We present a method for automatically
generating input parsers from English
specifications of input file formats. We
use a Bayesian generative model to cap-
ture relevant natural language phenomena
and translate the English specification into
a specification tree, which is then trans-
lated into a C++ input parser. We model
the problem as a joint dependency pars-
ing and semantic role labeling task. Our
method is based on two sources of infor-
mation: (1) the correlation between the
text and the specification tree and (2) noisy
supervision as determined by the success
of the generated C++ parser in reading in-
put examples. Our results show that our
approach achieves 80.0% F-Score accu-
racy compared to an F-Score of 66.7%
produced by a state-of-the-art semantic
parser on a dataset of input format speci-
fications from the ACM International Col-
legiate Programming Contest (which were
written in English for humans with no in-
tention of providing support for automated
processing).1

1 Introduction

The general problem of translating natural lan-
guage specifications into executable code has been
around since the field of computer science was
founded. Early attempts to solve this problem
produced what were essentially verbose, clumsy,
and ultimately unsuccessful versions of standard
formal programming languages. In recent years

1The code, data, and experimental setup for this research
are available at http://groups.csail.mit.edu/rbg/code/nl2p
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Figure 1: An example of (a) one natural language
specification describing program input data; (b)
the corresponding specification tree representing
the program input structure; and (c) two input ex-
amples

however, researchers have had success address-
ing specific aspects of this problem. Recent ad-
vances in this area include the successful transla-
tion of natural language commands into database
queries (Wong and Mooney, 2007; Zettlemoyer
and Collins, 2009; Poon and Domingos, 2009;
Liang et al., 2011) and the successful mapping of
natural language instructions into Windows com-
mand sequences (Branavan et al., 2009; Branavan
et al., 2010).

In this paper we explore a different aspect of
this general problem: the translation of natural
language input specifications into executable code
that correctly parses the input data and generates

Using Semantic Unification to Generate
Regular Expressions from Natural Language

Nate Kushman Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{nkushman, regina}@csail.mit.edu

Abstract

We consider the problem of translating natu-
ral language text queries into regular expres-
sions which represent their meaning. The mis-
match in the level of abstraction between the
natural language representation and the regu-
lar expression representation make this a novel
and challenging problem. However, a given
regular expression can be written in many se-
mantically equivalent forms, and we exploit
this flexibility to facilitate translation by find-
ing a form which more directly corresponds to
the natural language. We evaluate our tech-
nique on a set of natural language queries
and their associated regular expressions which
we gathered from Amazon Mechanical Turk.
Our model substantially outperforms a state-
of-the-art semantic parsing baseline, yielding
a 29% absolute improvement in accuracy.1

1 Introduction

Regular expressions (regexps) have proven them-
selves to be an extremely powerful and versatile for-
malism that has made its way into everything from
spreadsheets to databases. However, despite their
usefulness and wide availability, they are still con-
sidered a dark art that even many programmers do
not fully understand (Friedl, 2006). Thus, the ability
to automatically generate regular expressions from
natural language would be useful in many contexts.

Our goal is to learn to generate regexps from nat-
ural language, using a training set of natural lan-
guage and regular expression pairs such as the one
in Figure 1. We do not assume that the data includes
an alignment between fragments of the natural lan-
guage and fragments of the regular expression. In-

1The dataset used in this work is available at
http://groups.csail.mit.edu/rbg/code/regexp/

Text Description Regular Expression
three letter word starting with ’X’ \bX[A-Za-z]{2}\b

Figure 1: An example text description and its associated
regular expression.3

ducing such an alignment during learning is partic-
ularly challenging because oftentimes even humans
are unable to perform a fragment-by-fragment align-
ment.

We can think of this task as an instance of
grounded semantic parsing, similar to the work
done in the domain of database queries (Kate and
Mooney, 2006; Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). However, the current
success in semantic parsing relies on two impor-
tant properties of the data. First, while the past
work did not assume the alignment was given, they
did assume that finding a fine grained fragment-
by-fragment alignment was possible. Secondly,
the semantic domains considered in the past were
strongly typed. This typing provides constraints
which significantly reduce the space of possible
parses, thereby greatly reducing the ambiguity.

However, in many interesting domains these two
properties may not hold. In our domain, the align-
ment between the natural language and the regu-
lar expressions often happens at the level of the
whole phrase, making fragment-by-fragment align-
ment impossible. For example, in Figure 1 no frag-
ment of the regexp maps clearly to the phrase “three
letter”. Instead, the regexp explicitly represents the
fact that there is only two characters after X, which is
not stated explicitly by the text description and must
be inferred. Furthermore, regular expressions have

3Our regular expression syntax supports Perl regular expres-
sion shorthand which utilizes \b to represent a break (i.e. a
space or the start or end of the line). Our regular expression
syntax also supports intersection (&) and complement(˜).
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Example #1:
(a) show me the flights from boston to philly

�x.flight(x) ^ from(x, bos) ^ to(x, phi)

(b) show me the ones that leave in the morning
�x.flight(x) ^ from(x, bos) ^ to(x, phi)

^ during(x, morning)

(c) what kind of plane is used on these flights
�y.9x.flight(x) ^ from(x, bos) ^ to(x, phi)

^ during(x, morning) ^ aircraft(x) = y

Example #2:
(a) show me flights from milwaukee to orlando

�x.flight(x) ^ from(x, mil) ^ to(x, orl)

(b) cheapest
argmin(�x.flight(x) ^ from(x, mil) ^ to(x, orl),

�y.fare(y))

(c) departing wednesday after 5 o’clock
argmin(�x.flight(x) ^ from(x, mil) ^ to(x, orl)

^ day(x, wed) ^ depart(x) > 1700 ,
�y.fare(y))

Example #3:
(a) show me flights from pittsburgh to la thursday evening

�x.flight(x) ^ from(x, pit) ^ to(x, la)

^ day(x, thur) ^ during(x, evening)

(b) thursday afternoon
�x.flight(x) ^ from(x, pit) ^ to(x, la)

^ day(x, thur) ^ during(x, afternoon)

(c) thursday after 1700 hours
�x.flight(x) ^ from(x, pit) ^ to(x, la)

^ day(x, thur) ^ depart(x) > 1700

Figure 1: ATIS interaction excerpts.

pression zi,j specifying the target logical form.
Figure 1 contains example interactions.

The logical forms in the training set are repre-
sentations of each sentence’s underlying meaning.
In most cases, context (the previous utterances and
their interpretations) is required to recover the log-
ical form for a sentence. For instance, in Exam-
ple 1(b) in Figure 1, the sentence “show me the
ones that leave in the morning” is paired with

�x.flight(x) ^ from(x, bos) ^ to(x, phi)

^ during(x, morning)

Some parts of this logical form (from(x, bos) and
to(x, phi)) depend on the context. They have to be
recovered from the previous logical forms.

At step j in interaction i, we define the con-
text hzi,1, . . . , zi,j�1i to be the j � 1 preceding
logical forms.1 Now, given the training data, we
can create training examples (xi,j , zi,j) for i =

1 . . . n, j = 1 . . . ni. Each xi,j is a sentence and
a context, xi,j = (wi,j , hzi,1, . . . , zi,j�1i). Given
this set up, we have a supervised learning problem
with input xi,j and output zi,j .

1In general, the context could also include the previous
sentences wi,k for k < j. In our data, we never observed any
interactions where the choice of the correct logical form zi,j

depended on the words in the previous sentences.

3 Overview of Approach

In general, the mapping from a sentence and a con-
text to a logical form can be quite complex. In this
section, we present an overview of our learning
approach. We assume the learning algorithm has
access to:

• A training set D, defined in Section 2.

• A CCG lexicon.2 See Section 4 for an
overview of CCG. Each entry in the lexicon
pairs a word (or sequence of words), with
a CCG category specifying both the syntax
and semantics for that word. One example
CCG entry would pair flights with the cate-
gory N : �x.flight(x).

Derivations A derivation for the j’th sentence
in an interaction takes as input a pair x = (wj , C),
where C = hz1 . . . zj�1i is the current context. It
produces a logical form z. There are two stages:

• First, the sentence wj is parsed using
the CCG lexicon to form an intermediate,
context-independent logical form ⇡.

• Second, in a series of steps, ⇡ is mapped to z.
These steps depend on the context C.

As one sketch of a derivation, consider how we
might analyze Example 1(b) in Figure 1. In this
case the sentence is “show me the ones that leave
in the morning.” The CCG parser would produce
the following context-independent logical form:

�x.!he, ti(x) ^ during(x,morning)

The subexpression !he, ti results directly from the
referential phrase the ones; we discuss this in more
detail in Section 4.2, but intuitively this subexpres-
sion specifies that a lambda-calculus expression of
type he, ti must be recovered from the context and
substituted in its place.

In the second (contextually dependent) stage of
the derivation, the expression

�x.flight(x) ^ from(x, bos) ^ to(x, phi)

is recovered from the context, and substituted for
the !he, ti subexpression, producing the desired fi-
nal logical form, seen in Example 1(b).

2Developing algorithms that learn the CCG lexicon from
the data described in this paper is an important area for future
work. We could possibly extend algorithms that learn from
context-independent data (Zettlemoyer and Collins, 2005).
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A Joint Model of Language and Perception for Grounded Attribute Learning

We evaluate this approach on data gathered on Ama-
zon Mechanical Turk, in which people describe sets of
objects on a table. Experiments demonstrate that the
joint learning approach can e↵ectively extend the set
of grounded concepts in an incomplete model initial-
ized with supervised training on a small dataset. This
provides a simple mechanism for learning vocabulary
in a physical environment.

Figure 1. An example of an RGB-D object identification
scene. Columns on the right show example segments, iden-
tified as positive (far right) and negative (center).

2. Overview of the Approach

Problem We wish to learn a joint language and per-
ception model for the object selection task. The goal
is to automatically map a natural language sentence
x and a set of scene objects O to the subset G ✓ O
of objects described by x. The left panel of Fig. 1
shows an example scene. Here, O is the set of objects
present in this scene. The individual objects o 2 O are
extracted from the scene via segmentation (the right
panel of Fig. 1 shows example segments). Given the
sentence x =“Here are the yellow ones,” the goal is to
select the five yellow objects for the named set G.

Model Components Given a sentence and seg-
mented scene objects, we learn a distribution P (G |
x,O) over the selected set. Our approach combines
recent models of language and vision, including:

(1) A semantic parsing model that defines P (z|x), a
distribution over logical meaning representations z for
each sentence x. In our running example, the desired
representation z = �x.color(x, yellow) is a lambda-
calculus expression that defines a set of objects that
are yellow. For this task, we build on an existing se-
mantic parsing model (Kwiatkowski et al., 2011).

(2) A set of visual attribute classifiers C, where each
classifier c 2 C defines a distribution P (c = true|o)
of the classifier returning true for each possible object
o 2 O in the scene. For example, there would be a
unique classifier c 2 C for each possible color or shape
an object can have. We use logistic regression to train

classifiers on color and shape features extracted from
object segments recorded using a Kinect depth camera.

Joint Model We combine these language and vision
models in two ways. First, we introduce an explicit
model of alignment between the logical constants in
the logical form z and classifiers in the set C. This
alignment would, for example, enable us to learn that
the logical constant yellow should be paired with a
classifier c 2 C that fires on yellow objects.

Next, we introduce an execution model that allows
us to determine what scene objects in O would be
selected by a logical expression z, given the classi-
fiers in C. This allows us to, for example, execute
�x.color(x, green)^shape(x, triangle) by testing all of
the objects with the appropriate classifiers (for green
and triangle), then selecting objects on which both
classifiers return true. This execution model includes
uncertainty from the semantic parser P (z|x), classifier
confidences P (c = true|o), and a deterministic ground-
truth constraint that encodes what objects are actually
intended to be selected. Full details are in Sec. 5.

Model Learning We present an approach that
learns the meaning of new words from a dataset D =
{(x

i

, O
i

, G
i

) | i = 1 . . . n}, where each example i con-
tains a sentence x

i

, the objects O
i

, and the selected
set G

i

. This setup is an abstraction of the situa-
tion where a teacher mentions x

i

while pointing to
the objects G

i

✓ O
i

she describes. As described in
detail in Sec. 6, learning proceeds in an online, EM-
like fashion by repeatedly estimating expectations over
the latent logical forms z

i

and the outputs of the clas-
sifiers c 2 C, then using these expectations to update
the parameters of the component models for language
P (z|x) and visual classification P (c|o). To bootstrap
the learning approach, we first train a limited language
and perception system in a fully supervised way: in
this stage, each example additionally contains labeled
logical meaning expressions and classifier outputs, as
described in Sec. 6.

3. Related Work

To the best of our knowledge, this paper presents the
first approach for jointly learning visual classifiers and
semantic parsers, to produce rich, compositional mod-
els that span directly from sensors to meaning. How-
ever, there is significant related work on the model
components, and on grounded learning in general.

Vision Current state-of-the-art object recognition
systems (Felzenszwalb et al., 2009; Yang et al., 2009)
are based on local image descriptors, for example
SIFT over images (Lowe, 2004) and Spin Images over
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Abstract—Our goal is to build robots that can robustly
interact with humans using natural language. This problem is
challenging because human language is filled with ambiguity,
and furthermore, due to limitations in sensing, the robot’s
perception of its environment might be much more limited than
that of its human partner. To enable a robot to recover from a
failure to understand a natural language utterance, this paper
describes an information-theoretic strategy for asking targeted
clarifying questions and using information from the answer to
disambiguate the language. To identify good questions, we derive
an estimate of the robot’s uncertainty about the mapping between
specific phrases in the language and aspects of the external
world. This metric enables the robot to ask a targeted question
about the parts of the language for which it is most uncertain.
After receiving an answer, the robot fuses information from the
command, the question, and the answer in a joint probabilistic
graphical model in the G3 framework. When using answers to
questions, we show the robot is able to infer mappings between
parts of the language and concrete object groundings in the
external world with higher accuracy than by using information
from the command alone. Furthermore, we demonstrate that by
effectively selecting which questions to ask, the robot is able to
achieve significant performance gains while asking many fewer
questions than baseline metrics.

I. INTRODUCTION

Our aim is to make robots that can naturally and flexibly
interact with a human partner via natural language. An espe-
cially challenging aspect of natural language communication is
the use of ambiguous referring expressions that do not map to
a unique object in the external world. For instance, Figure 1
shows a robotic forklift in a real-world environment paired
with instructions created by untrained users to manipulate
one of the objects in the scene. These instructions contain
ambiguous phrases such as “the pallet” which could refer
equally well to multiple objects in the environment. Even
if the person gives a command that would be unambiguous
to another person, they might refer to aspects of the world
that are not directly accessible to the robot’s perceptions. For
example, one of the commands in Figure 1 refers to “the
metal crate.” If a robot does not have access to perceptual
features corresponding to the words “metal” or “crate,” it
cannot disambiguate which object is being referenced.
In this paper, we present an approach for enabling robots to

recover from failures like these by asking a clarifying question,
the same strategy that humans use when faced with ambiguous

1The first two authors contributed equally to this paper.

(a)

Move the pallet from the truck.

Remove the pallet from the back of the truck.

Offload the metal crate from the truck.

(b)

Fig. 1: Sample natural language commands collected from
untrained users, commanding the forklift to pick up a pallet
in (a).

language. The robot first identifies the most ambiguous parts
of a command, then asks a targeted question to try to reduce
its uncertainty about which aspects of the external world
correspond to the language. For example, when faced with
a command such as “Pick up the pallet on the truck” in the
situation shown in Figure 1, the robot can infer that because
there is only one truck in the scene, but two pallets, the
phrase “the pallets” is the most ambiguous and ask a question
like, “What do you mean by ‘the pallet’?” Then it can use
information from the answer to disambiguate which object is
being referenced in order to infer better actions in response to
the natural language command.

Previous approaches to robotic question-asking do not
directly map between natural language and perceptually-
grounded aspects of the external world or incorporate addi-
tional information from free-form natural language answers in
order to disambiguate the command. [3, 11, 1]. As a result, the
robot cannot take advantage of its model of the environment
to determine the most ambiguous parts of an arbitrary natural
language command and identify a question to ask.
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about the parts of the language for which it is most uncertain.
After receiving an answer, the robot fuses information from the
command, the question, and the answer in a joint probabilistic
graphical model in the G3 framework. When using answers to
questions, we show the robot is able to infer mappings between
parts of the language and concrete object groundings in the
external world with higher accuracy than by using information
from the command alone. Furthermore, we demonstrate that by
effectively selecting which questions to ask, the robot is able to
achieve significant performance gains while asking many fewer
questions than baseline metrics.

I. INTRODUCTION

Our aim is to make robots that can naturally and flexibly
interact with a human partner via natural language. An espe-
cially challenging aspect of natural language communication is
the use of ambiguous referring expressions that do not map to
a unique object in the external world. For instance, Figure 1
shows a robotic forklift in a real-world environment paired
with instructions created by untrained users to manipulate
one of the objects in the scene. These instructions contain
ambiguous phrases such as “the pallet” which could refer
equally well to multiple objects in the environment. Even
if the person gives a command that would be unambiguous
to another person, they might refer to aspects of the world
that are not directly accessible to the robot’s perceptions. For
example, one of the commands in Figure 1 refers to “the
metal crate.” If a robot does not have access to perceptual
features corresponding to the words “metal” or “crate,” it
cannot disambiguate which object is being referenced.
In this paper, we present an approach for enabling robots to

recover from failures like these by asking a clarifying question,
the same strategy that humans use when faced with ambiguous
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language. The robot first identifies the most ambiguous parts
of a command, then asks a targeted question to try to reduce
its uncertainty about which aspects of the external world
correspond to the language. For example, when faced with
a command such as “Pick up the pallet on the truck” in the
situation shown in Figure 1, the robot can infer that because
there is only one truck in the scene, but two pallets, the
phrase “the pallets” is the most ambiguous and ask a question
like, “What do you mean by ‘the pallet’?” Then it can use
information from the answer to disambiguate which object is
being referenced in order to infer better actions in response to
the natural language command.

Previous approaches to robotic question-asking do not
directly map between natural language and perceptually-
grounded aspects of the external world or incorporate addi-
tional information from free-form natural language answers in
order to disambiguate the command. [3, 11, 1]. As a result, the
robot cannot take advantage of its model of the environment
to determine the most ambiguous parts of an arbitrary natural
language command and identify a question to ask.
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Function Composition
gh↵,�i = �x.G

fh�,�i = �y.F

g(A) = (�x.G)(A) = G[x := A]

f(g(A)) = (�y.F )(G[x := A]) =

F [y := G[x := A]]

�x.f(g(A))[A := x] =

�x.F [y := G[x := A]][A := x] =

�x.F [y := G] = (f · g)h↵,�i
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