Semantic Parsing with
Combinatory Categorial Grammars

Yoav Artzi, Nicholas FitzGerald and Luke Zettlemoyer
University of Washington

ACL 2013 Tutorial
Sofia, Bulgaria

A1) http://yoavartzi.com/tutorial

http://yoavartzi.com/tutorial

Language to Meaning

More informative

Language to Meaning

Information
Extraction

Recover information
about pre-specified
relations and entities

Example Task

Relation Extraction

OBAMA

RACIAL BARRIER FALLS IN DECISIVE VICTORY
=

== Che New JJork Times ==

More informative

||» is.a(OBAMA, PRESIDENT)

Language to Meaning

Broad-coverage
Semantics

Focus on specific
phenomena (e.g., verb-
argument matching)

More informative
Example Task

Summarization

== Che New JJork Times == - Cl)bama V\gns
e e | election. Big party
OBAMA in Chicago.
b= Romney a bit

down, asks for
some tea.

Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative
Example Task

Database Query

Oklahoma
What states ll» New Mexico
border Texas? Arkansas

L ouisiana

Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

Example Task

Instructing a Robot

at the chair,
turn right

5
i

—

Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

Complete meaning is sufficient to
complete the task

e Convert to database query to get the answer
e Allow a robot to do planning

Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

at the chair, move forward three steps past the sofa
Aa.pre(a, tx.chair(x)) A move(a) N len(a, 3) N
dir(a, forward) A past(a,ty.sofa(y))

Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

at the chair, move forward three steps past the sofa
Aa.pre(a, tx.chair(x)) A move(a) Nlen(a,3)/
dir(a, forward) N past(a,ty.sofa(y))

Language to Meaning

4)

at the chair, move forward three steps past the sofa ||\

Aa.pre(a, tx.chair(x)) A move(a) A len(a, 3)A

dir(a, forward) N past(a,ty.sofa(y))

\\))
\\))
g J

‘ Learn

f : sentence — logical form

Language to Meaning

-

at the chair, move forward three steps past the sofa

~N

f : sentence — logical form

Central Problems

Parsing Choices

® Grammar formalism

® |nference procedure

Inductive Logic Programming [Zelle and Mooney 1996¢]

SCFG [Wong and Mooney 2006]

CCG + CKY [Zettlemoyer and Collins 2005]

Constrained Optimization + |LP [Clarke et al.2010]
DCS + Projective dependency parsing [Liang et al. 201 1]

Learning

® What kind of supervision is available!?

® Mostly using latent variable methods

Annotated parse trees [Miller et al. 1994]

Sentence-LF pairs [Zettlemoyer and Collins 2005]
Question-answer pairs [Clarke et al. 2010]
Instruction-demonstration pairs [Chen and Mooney 201 1]

Conversation |OgS [Artzi and Zettlemoyer 201 1]
Visual sensors [Matuszek et al. 2012a]

Semantic Modeling

® What logical language to use!

® How to model meaning!?

Variable free logic [Zelle and Mooney 1996;Wong and Mooney 2006]
High-order logic [zettlemoyer and Collins 2005]

Relational algebra [Liang etal. 2011

Graphical models [Tellex et al.2011]

Today

~N

Parsing Combinatory Categorial Grammars

Learning Unified learning algorithm

Mlela il Best practices for semantics design

. J

Parsing Learning Modeling

Parsing Learning Modeling

e | ambda calculus

* Parsing with Combinatory Categorial

Grammars
e Linear CCGs

e Factored lexicons

Parsing Learning Modeling

e Structured perceptron

* A unified learning algorithm

* Supervised learning

* Weak supervision

Parsing Learning Modeling

* Semantic modeling for:
- Querying databases
- Referring to physical objects

- Executing instructions

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf

Semantic Flexible High-Order Learning
Parser Logic Representation Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 201 3a]

http://yoavartzi.com/spf

Parsing Learning Modeling

e | ambda calculus

* Parsing with Combinatory Categorial

Grammars
e Linear CCGs

e Factored lexicons

Lambda Calculus

® Formal system to express computation

® Allows high-order functions

Aa.move(a) A dir(a, LEFT) A to(a, ty.chair(y))A
pass(a, Ay.sofa(y) A intersect(Az.intersection(z),y))

[Church 1932]

Lambda Calculus
Base Cases

® | ogical constant
® Variable
® |iteral

® | ambda term

Lambda Calculus
Logical Constants

® Represent objects in the world

NYC,CA, RAINIER, LEFT, . ..

located_in, depart_date, . . .

Lambda Calculus
Variables

® Abstract over objects in the world

® Exact value not pre-determined

T, Y, 2,

Lambda Calculus
Literals

® Represent function application

city(AUSTIN)
located_in(AUSTIN, TEX AS)

Lambda Calculus
Literals

® Represent function application

city(AUSTIN)

located_in([AUSTIN, TEX A

Logical expression List of logical expressions

Lambda Calculus
Lambda Terms

® Bind/scope a variable
® Repeat to bind multiple variables
Ax.city(x)
Ax.A\y.located_in(x, y)

Lambda Calculus
Lambda Terms

® Bind/scope a variable

® Repeat to bind multiple variables

Ax.city(x)

located_in(x,y) Body

Lambda Calculus
Quantifiers?

® Higher order constants
® No need for any special mechanics

® Can represent all of first order logic

V(Az.big(x) A apple(x))
—(I(Ax.lovely(x))
L(Az.beautt ful(x) A grammar(x))

Lambda Calculus
Syntactic Sugar

AN (A NB,C)) < A
V(A V(B,(C)) < A
-(A) & -A

NBAC
vV BVC

QAz.f(x)) & Q. f(x)

for Q € {1, A, =

V'

Ax. flight(x) A to(x, move)
Ax. flight(x) Ato(x, NY C)
Ax.NYC(x) N\ x(to, move)

X \x.flight(z) A to(x, move)
Ax. flight(x) Ato(x, NY C)
X \e.NYC(x) A x(to, move)

Simply Typed Lambda Calculus

® Like lambda calculus

® But, typed

X \x.flight(x) A to(x, move)
Ax. flight(x) A to(x, NY C)
X \e.NYC(x) A x(to, move)

[Church 1940]

Lambda Calculus
Typing

® Simple types

Truth-
Z o
value Complex types

| <et>
6Ent|ty
<< e, t>e>

Lambda Calculus

Typing
® Simple types
Truth- Type
t value ® Complex types constructor
| < eyt >
6 Entity

tr

loc

Lambda Calculus
Typing

® Simple types
Type

® Complex types constructor

< et >

® Hierarchical typing system

Lambda Calculus
Typing

® Simple types
Type

® Complex types constructor

< eyt >

® Hierarchical typing system

Simply Typed Lambda Calculus

Aa.move(a) A dir(a, LEFT) A to(a, ty.chair(y))A
pass(a, Ay.sofa(y) A intersect(Az.intersection(z),y))

Type information usually omitted

Capturing Meaning with
Lambda Calculus

L
P.

WA OR Bianca CcO

AL Montgomery 3.9 WA D Antero cO
AK Juneau 0.4 CA | OR Rainier WA
= N A (EA N_/ Shasta CA
Wrangel AK

Sir” >

Show me mountains in states
bordering Texas

[Zettlemoyer and Collins 2005]

SYSTEM

USER
SYSTEM

USER

SYSTEM

USER
SYSTEM

USER

SYSTEM

USER

Capturing Meaning with
Lambda Calculus

how can | help you !

i “ d like to fly to new york
flying to new york . leaving what city ?

from boston on june seven with american airlines
flying to new york . what date would you like to depart boston ?

june seventh
do you have a preferred airline ?
american airlines

o .k .leaving boston to new york on june seventh flying with
american airlines . where would you like to go to next !

back to boston on june tenth

[Artzi and Zettlemoyer 201 1]

Capturing Meaning with
Lambda Calculus

Aa.move(a)

Ato(a,. ..

go to the chair

and turn right O
Q
O

[Artzi and Zettlemoyer 2013b]

Capturing Meaning with
Lambda Calculus

® Flexible representation

® Can capture full complexity of natural
language

More on modeling meaning later

Constructing Lambda
Calculus Expressions

at the chair, move forward three steps past the sofa

Aa.pre(a, tx.chair(x)) A move(a) Nllen(a,3)/
dir(a, forward) /N past(a, vy.sofa(y))

Combinatory Categorial
Grammars

CCG 1S fun

NP S\NP/ADJ ADJ
CCG Af)x.f(x) Ax.fun(z)
>

S\NP

S
fun(CCG)

[Steedman 1996, 2000]

Combinatory Categorial
Grammars

Categorial formalism

Transparent interface between syntax and
semantics

Designed with computation in mind

Part of a class of mildly context sensitive
formalisms (e.g., TAG, HG, LIG) goshi et al. 1990]

CCG Categories
ADJ : Ax.fun(x)

® Basic building block

® Capture syntactic and semantic information
jointly

CCG Categories

: A\ fun(gj) Semantics

® Basic building block

® Capture syntactic and semantic information
jointly

CCG Categories
Syntax))\foun(af)

(S\NP)/ADJ : Af.\x.f(x)
NP :CCG

® Primitive symbols: N, S, NP ADJ and PP
® Syntactic combination operator (/,\)

® Slashes specify argument order and direction

CCG Categories

ADJ))\aifun(aj) Semantics

(S\NP)/ADJ : Af.\x.f(x)
NP :CCG

® J-calculus expression

® Syntactic type maps to semantic type

CCG Lexical Entries
fun F ADJ : Ax.fun(x)

® Pair words and phrases with meaning

® Meaning captured by a CCG category

CCG Lexical Entries
ADJ : \x.fun(x)

Natural CCG Category
Language

® Pair words and phrases with meaning

® Meaning captured by a CCG category

CCG Lexicons

fun F ADJ : Ax.fun(x)
is F(S\NP)/ADJ : \f.\x.f(x)

CCG

NP :(COCG

® Pair words and phrases with meaning

® Meaning captured by a CCG category

Between CCGs and CFGs

CFGs CCGs

Combination operations Many Few

Parse tree nodes Non-terminals| Categories

Handful, but

Syntactic symbols Few dozen .
can combine

Paired with words, POS tags Categories

Parsing with CCGs

CCG 1S fun

NP S\NP/ADJ ADJ
CCG AfAz.f(z) Az fun(z)

Use lexicon to match words and
phrases with their categories

CCG Operations

® Small set of operators
® |nput: |-2 CCG categories
® Output:A single CCG category
® Operate on syntax semantics together

® Mirror natural logic operations

CCG Operations
Application

B:g A\B:f=A:f(g) (<)
A/B:f B:g=A:f(g9) (>)
® Equivalent to function application

® [wo directions: forward and backward

= Determined by slash direction

CCG Operations
Application

Argument Function Result
A\B fl=|A: f (<)

A/B:f B:g=A:f(g9) (>)

® Equivalent to function application
® [wo directions: forward and backward

= Determined by slash direction

Parsing with CCGs

CCG 1S fun

NP S\NP/ADJ ADJ
CCG Af)x.f(x) Ax.fun(z)

Use lexicon to match words and
phrases with their categories

Parsing with CCGs

CCG 1S fun

NP S\NP/ADJ ADJ
CCG A x.f(x) Mx.fun(z)
>

S\N P
Ax. fun(x)

Combine categories using operators

A/B:f B:g=A:f(g9) (>)

Parsing with CCGs

CCG 1S fun

NP S\NP/ADJ ADJ
CCG Mf)x.f(x) Ax.fun(z)
>

S\N P
Ax. fun(x)

S
fun(CCG)

Combine categories using operators

B:g A\B:f=A:f(9) (<)

Parsing with CCGs

Composed
~adjectives

" p¥

square blue or round yellow pillow

‘\ Non-standard

coordination

CCG Operations

Composition

A/B:f B/C:.:g9g=A/C:Xx.f(9(x)) (> B)
B\C:qg A\B:f=A\C:Ax.f(g(z)) (< B)

® Equivalent to function composition™

® [wo directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations

Composition

I g fog
g Ao R

B\C:g A\B:f= A\C:\x.f(g9(x)) (< B)

® Equivalent to function composition™

® [wo directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations
Type Shifting

ADJ : Ax.g(x) = N/N : Af) x.f(x) A g(x)
PP : Ax.g(x) = N\N : A\f.\x.f(x) A g(x)
AP : de.g(e) = S\S : AfXe.f(e) A g(e)
AP : de.gle) = S/S : Af.de.f(e) A g(e)

® Category-specific unary operations

® Modify category type to take an argument

® Helps in keeping a compact lexicon

CCG Operations
Type Shifting

Input Output
ADJ : Ax.g(x)|=|N/N : A\f.Ax.f(x) N g(x)

PP :)\xg(az)iN\N AfAx. f(x) N g(x)
e) = S\S : Afhe.f(e) Ag(e)
e) = S/S : Af.Xe.f(e) Agle)

N\
A\
® Category-specific unary operations

® Modify category type to take an argument

® Helps in keeping a compact lexicon

CCG Operations
Type Shifting

Input Output
ADJ : Mx.g(x)|=|N/N : Af.dx.f(x) A g(x)

PP : Ax.g(x) = N\N : Af) x.f(x) A g(x)
e) = S\S : Af.Xe.f(e) A g(e)
) g(e)

9(
AP Ae.g(e i: Af.Xe.f(e (e

® Category-specific unary operations

A
A

v\/

® Modify category type to take an argument

® Helps in keeping a compact lexicon

CCG Operations

Coordination

and — C : cony
or = C :disy

® Coordination is special cased
- Specific rules perform coordination

= Coordinating operators are marked with
special lexical entries

Parsing with CCGs

blue or round yellow pillow

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Ax.pillow(x)

Use lexicon to match words and
phrases with their categories

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Ax.pillow(x)

N/N
A x. f(x) N square(x)

Shift adjectives to combine

ADJ : Ax.g(x) = N/N : Af) x.f(x) A g(x)

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Ax.pillow(x)
N/N N/N N/N N/N
Af Az f(x) A square(z) Af.Ax.f(xz) A blue(x) Az f(x) ANround(x) Af x.f(x) A yellow(x)

Shift adjectives to combine

ADJ : Ax.g(x) = N/N : Af) x.f(x) A g(x)

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Ax.pillow(x)
N/N N/N N/N N/N
Af A x.f(x) A square(z) Af.dx.f(x) A blue(x) Az f(x) Around(x) Af. x.f(x) A yellow(x)
B B
N/N - N/N -
Af Az f(x) A square(z) A blue(x) AfAx.f(x) A round(x) A yellow(x)

Compose pairs of adjectives

A/B:f B/C:9g=A/C:Xx.f(9(x)) (> B)

Parsing with CCGs

square blue or round yellow
ADJ ADJ C ADJ ADJ
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Ax.pillow(x)

N/N N/N N/N N/N
Af A x.f(x) A square(z) Af.dx.f(x) A blue(x) A x. f(x) ANround(x) Af.dx.f(x) A yellow(x)
B B

N/N - N/N -
Af Az f(x) A square(z) A blue(x) AfAx.f(x) A round(x) A yellow(x)
<P>
N/N

Az f(x) A ((square(x) A blue(x)) V (round(zx) A yellow(x)))

Coordinate composed adjectives

Parsing with CCGs

square blue or round yellow pillow
ADJ ADJ C ADJ ADJ N
Ax.square(x) Ax.blue(x) disj Ax.round(x) Ax.yellow(x) Azx.pillow(x)
N/N N/N N/N N/N
Af A x.f(x) A square(z) Af.dx.f(x) A blue(x) A x. f(x) ANround(x) Af.dx.f(x) A yellow(x)
B B
N/N - N/N i’
Af A x.f(x) A square(z) A blue(x) AfAx. f(x) A round(x) A yellow(x)
o
NN <>
Af Az f(x) A ((square(x) A blue(x)) V (round(x) A yellow(x)))
>
N

Ax.pillow(x) A ((square(x) A blue(z)) V (round(x) A yellow(x)))

Apply coordinated adjectives to noun

A/B:f B:g=A:f(g9) (>)

Parsing with CCGs

T CCG IS fun

NP S\NP/ADJ ADJ
CCG Af)x.f(x) Ax.fun(z)
>

S\NP
y Ax. fun(x)

S
7 fun(CCG)

Lexical + Many parsing » Many potential
Ambiguity decisions trees and LFs
. J

Weighted Linear CCGs

® Given a weighted linear model:

= CCG lexicon A

- Feature function [f: X xY — R™
- Weights w € R™

® The best parse is:
X

y* = argmaxw - f(x,y)
Y
® We consider all possible parses 1 for sentence z given

the lexicon A

Parsing Algorithms
® Syntax-only CCG parsing has polynomial
time CKY-style algorithms

® Parsing with semantics requires entire
category as chart signature

- eg, ADJ : \x. fun(x)
® |n practice, prune to top-N for each span

- Approximate, but polynomial time

More on CCGs

Generalized type-raising operations

Cross composition operations for cross
serial dependencies

Compositional approaches to English
Intonation

and a lot more ... even Jazz

[Steedman 1996;2000; 201 |; Granroth and Steedman 2012]

The Lexicon Problem

® Key component of CCG

® Same words often paired with many
different categories

® Difficult to learn with limited data

Factored Lexicons

the house dog

the dog of the house
vx.dog(x) A of (x,ty.house(y))

the garden dog
vr.dog(x) N of (z,y.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

[Kwiatkowski et al. 201 1]

Factored Lexicons

the house dOg house - ADJ : Ax.of (x, ty.house(y))

the dog of the house house = N : Az.house(x)

vx.dog(x) N of (z,ty.house(y))

the garden dog garden - ADJ : Az.of (x,ty.garden(y))

vx.dog(x) N of (x, ty.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

Factored Lexicons

the house dOg house - ADJ : A\x.of (z, 1y.house(y))

the dog of the house house + N : \x.house(x)

vx.dog(x) N of (z,ty.house(y))

the garden dog garden - ADJ : Az.of (x,ty.garden(y))

vx.dog(x) N of (x, ty.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

Factored Lexicons

the house dOg house = ADJ : Ax.of(x,y.house(y))

the dog of the house house + N : \x.house(x)

vx.dog(x) N of (z,ty.house(y))

the garden dog garden HADJ : Ax.of (x,ty.garden(y))

vx.dog(x) N of (x, ty.garden(y))

® | exical entries share information

® Decomposition of entries can lead to more
compact lexicons

Factored Lexicons

(garden, {garden})

(house, {house})

. J

* Templates

Aw, {vi}T)-

whHADJ : Ax.of (z,y.v1(y))]
Aw, {vify).

w kN : Az (o)

. J

sarden + ADTENEGF@ g arden ()

Factored Lexicons

Templates

AMw, {vi}7). (garden, {garden})
whHADJ : Ax.of(z,ty.v1(y))] (house, {house})
n \. J
Aw, {vi}T)-
\ w kN : Az (o))
e Capture systematic variations * Model word meaning

in word usage e Abstracts the compositional

e Each variation can then be nature of the word
applied to compact units of
lexical meaning

Factored Lexicons

(garden, {garden})

Words |

Aw, {vif7)-
wF N Az ()]

B w < garden
‘ v1 < garden

garden - N : A\x.garden(x)

Factored Lexicons

flight
flight
Original [t

B2y dlele)g ground
ground

| transport

| transport

grounc

-5
-5

| transport

)

- S|INP : \x.flight(x)
= S|INP/(S|NP) : Af) x.flight(x) A f(x)
= S|INP\(S|NP) : Af.Ax. flight(x) A f(x)

NP : dx.trans(z)
NP/(S|INP) : \f.Ax.trans(z) A f(x)
NP\(S|NP) : Af x.trans(x) N f(x)

Factored

(flight, { flight})

(ground transport, {trans})

Lexicon RICACI ORI

Aw, {vi}7)lw kS
AMw,{v;})).JwE S

NP : dx.vi(x)]
NP/(S|NP
NP\(S|NP

: Af Az (x) A f(x)]

)
) Af Az () A f(x)]

Factoring a Lexical Entry

house = ADJ : Ax.of (x, ty.house(y))

Partial (house, {house})
factoring Mw, {v;}7).lwt ADJ : Ax.of (x, ty.v1(y))]

Partial (house, {of })
factoring MNw,{v;i}1).lwtH ADJ : Ax.vy(x, ty.house(y))]

Maximal (house, {of, house})
factoring Mw,{v;}7).lw bk ADJ : Ax.vi(x, ty.va(y))]

Parsing Learning Modeling

e | ambda calculus

* Parsing with Combinatory Categorial

Grammars
e Linear CCGs

e Factored lexicons

Learning

Learning

Data

® What kind of data/supervision we can use?

® \VWhat do we need to learn?

Parsing as Structure

show me flights to Boston
S/N N PP/NP NP
M. f Ax. flight(x) Ay Ax.to(x,y) BOSTON
PP 7
Ax.to(x, BOSTON)
N\N
AfAx.f(x) Ato(x, BOSTON)
<
N
Ax. flight(x) A to(z, BOSTON)
>
S

Ax. flight(x) A to(x, BOSTON)

Learning CCG

show me flights to Boston
S/N N PP/NP NP
A.f Ax. flight(x) Ay.Ax.to(x,y) BOSTON
PP -
Ax.to(x, BOSTON)
N\N
Af) x.f(x) Ato(x, BOSTON)
<
N
Ax. flight(x) A to(z, BOSTON)
>
S

Ax. flight(x) A to(x, BOSTON)

| exicon Combinators

Learning CCG

show me flights to Boston
S/N N PP/NP NP
A.f Ax. flight(x) Ay.Ax.to(x,y) BOSTON
PP -
Ax.to(x, BOSTON)
N\N
Af) x.f(x) Ato(x, BOSTON)
<
N
Ax. flight(x) A to(z, BOSTON)
>
S

Ax. flight(x) A to(x, BOSTON)

Combinators

| exicon

Predefined

Learning CCG

show me flights to Boston
S/N N PP/NP NP
A.f Ax. flight(x) Ay.Ax.to(x,y) BOSTON
PP -
Ax.to(x, BOSTON)
N\N
Af) x.f(x) Ato(x, BOSTON)
<
N
Ax. flight(x) A to(z, BOSTON)
>
S

Ax. flight(x) A to(x, BOSTON)

Combinators

| exicon

Predefined

Supervised Data

show me flights to Boston
S/N N PP/NP NP
M. f Ax. flight(x) Ay Ax.to(x,y) BOSTON
PP 7
Ax.to(x, BOSTON)
N\N
AfAx.f(x) Ato(x, BOSTON)
<
N
Ax. flight(x) A to(z, BOSTON)
>
S

Ax. flight(x) A to(x, BOSTON)

Supervised Data

show me flights

(\’(,
07
\,’2&

Ax. flight(x) A to(x, BOSTON)

Supervised Data

Supervised learning is done from pairs
of sentences and logical forms

Show me flights to Boston
Ax. flight(x) Ato(x, BOSTON)

| need a flight from baltimore to seattle

\x. flight(z) N\ from(x, BALTIMORE) ANto(x, SEATTLE)

what ground transportation is available in san francisco
Ax.ground_transport(x) A to_city(x, SF')

[Zettlemoyer and Collins 2005; 2007]

Weak Supervision

® | ogical form is latent
® “Labeling” requires less expertise

® |abels don’t uniquely determine correct
logical forms

® | earning requires executing logical forms
within a system and evaluating the result

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas!

New Mexico

[Clarke et al. 2010; Liang et al. 201]

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas!

New Mexico

argmax(Ax.state(x)
A border(x, TX), \y.size(y))

argmax(Ax.river(x)
Ain(x, TX), \y.size(y))

[Clarke et al. 2010; Liang et al. 201]

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas!

New Mexico

argmazx(Azx.state(x)
— - N ew Mexico
A border(x, TX), \y.size(y))

argmax(Ax.river(x)
Ain(x, TX), \y.size(y))

o - Ri0 Grande

[Clarke et al. 2010; Liang et al. 201]

Weak Supervision
Learning from Query Answers

What is the largest state that borders Texas!

New Mexico

argmazx(Azx.state(x)
— - N ew Mexico
A border(x, TX), \y.size(y))

argmax(Ax.river(x)
Ain(x, TX), \y.size(y))

o - Ri0 Grande x

[Clarke et al. 2010; Liang et al. 201]

Weak Supervision
Learning from Demonstrations

at the chair, move forward three steps past the sofa

[Chen and Mooney 201 |; Kim and Mooney 2012;Artzi and Zettlemoyer 201 3b]

Weak Supervision
Learning from Demonstrations

at the chair, move forward three steps past the sofa

Some examples from other domains:
® Sentences and labeled game states [Goldwasser and Roth 201 1]

® Sentences and sets of physical objects [Matuszek et al. 2012]

[Chen and Mooney 201 |; Kim and Mooney 2012;Artzi and Zettlemoyer 201 3b]

SYSTEM

USER
SYSTEM

USER
SYSTEM

USER

Weak Supervision
Learning from Conversation Logs

how can | help you ? (OPEN TASK)

i * d like to fly to new york

flying to new york . (CONFIRM: from(fi, ATL)) leaving what city ?
(ASK: Ax.from(fl,x))

from boston on june seven with american airlines

flying to new york . (CONFIRM: to(fi, NYC)) what date would you
like to depart boston ? (ASK: Az.date(fl,x)rto(fl, BOS))

june seventh

[Artzi and Zettlemoyer 201 1]

Parsing Learning Modeling

e Structured perceptron

* A unified learning algorithm

* Supervised learning

* Weak supervision

Structured Perceptron

® Simple additive updates

= Only requires efficient decoding (argmax)

= Closely related to MaxEnt and other
feature rich models

= Provably finds linear separator in finite
updates, if one exists

® Challenge: learning with hidden variables

Structured Perceptron

Data: {(z;,y;) :2=1...n}

Fort=1...1": [iterate epochs]
For:=1...n: [iterate examples]
y* < arg max, (0, ®(x;,y)) [predict]

If y* # y;: [check]

0 < 0+ (I)(,CL‘Z, yZ) o (I)(,CL‘Z, y*) [update]

[Collins 2002]

One Derivation of the Perceptron

€w-f(:c,y)

Log-linear model: p(y|z) = S v f@y)

(2

Step |: Differentiate, to maximize data log-likelihood

update — Z f(xza yz) — Ep(y|az,,,)f($w y)

Step 2: Use online, stochastic gradient updates, for example i:

fUdeCLtBi — f(xza yz) — Ep(y|:vz)f($u y)

Step 3: Replace expectations with maxes (Viterbi approx.)

update; = f(x;,y;) — f(xi,y") where Y™ = arg myaxw ' f(xz',y)

The Perceptron with Hidden Variables

Log-linear ew f(@,h,y)

model: p(ylz) = > p(y, hlz) Py, hlz) = S €@ F @)
h Y

Step |: Differentiate marginal, to maximize data log-likelihood

update — Z Ep(h|yz,xz) [f($27 h7 yz)] — Ep(y,h|a:7;) [f(;ljz, h7 y)]
1
Step 2: Use online, stochastic gradient updates, for example i:

updatei — Ep(yz,h|xz)[f($zv h7 yz)] - Ep(y,h|:137;) f(il?@, h7 y)]

Step 3: Replace expectations with maxes (Viterbi approx.)

update; = f(xi, h',vy;) — f(x;, R*,y") where

y",h* = arg maxw - f(z;,h,y) and A’ = arg maxw - f(xih,y:)
Yy,

Hidden Variable Perceptron

Data: {(z;,y;) :2=1...n}
Fort=1...1": [iterate epochs]

Fori=1...n: [iterate examples]
y*, h* <= argmax, (0, ®(zi, h,y)) [predict]

If y* £ ;- [check]

h' + argmaxy (6, ®(x;, h,y;) [predict hidden]

0 <« 0+ CI)(:EZ', h' yz) — CID(xZ-, h*, y*) [update]

[Liang et al. 2006; Zettlemoyer and Collins 2007]

Hidden Variable Perceptron

® No known convergence guarantees

= Log-linear version is hon-convex
® Simple and easy to implement

- Works well with careful initialization
® Modifications for semantic parsing

- Lots of different hidden information

= Can add a margin constraint, do
probabilistic version, etc.

Unified Learning Algorithm

® Handle various learning signals
® Estimate parsing parameters
® |nduce lexicon structure

® Related to loss-sensitive structured
p€E rceptron [Singh-Miller and Collins 2007]

Learning Choices

Validation Function

V.Y —{t, f} GENLEX (x,V; A, 0)
¢ Indicates correctness e Given:
of a parse y sentence I
validation function V

* Varying) allows for
differing forms of
supervision

lexicon A
parameters 0
* Produce a overly general
set of lexical entries

Unified Learning Algorithm

Initialize 6 using Ay , A +— Ag ® Online

Fort=1...T,1=1...n:

o .
Step 1: (Lexical generation) InPUt°

Step 2: (Update parameters) { (:
r;,Vi):i=1...n}
Output: Parameters 6 and lexicon A

®) steps:
= Lexical generation

= Parameter update

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Initialize parameters and

lexicon

6 weights

A initial lexicon

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

|terate over data

1" #£ iterations

n # samples

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)
a. Set \q + GENLEX(ZEZ', Vi A\, (9),
A< AU
b. Let Y be the £ highest scoring parses from
c. Select lexical entries from the highest scor-
ing valid parses:
Ai = Uyenmraxv o LEX ()
d. Update lexicon: A < A U A,
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Initialize 6 using Ay , A < Ag
Fort=1...T,1=1...n:

Step 1: (Lexical generation)
a. Set \q < GENLEX (2;,Vi: A, 0). Generate a large set of

A AUAa | potential lexical entries
b. Let Y be the £ highest scoring parses from
c. Select lexical entries from the highest scor- 0 weights
ing valid parses: T; sentence
A UyGMAX%(Y;@) LEX(:U) V; validation function
d. Update lexicon: A <~ AU \; GENLEX (z;,V;; A, 0)
Step 2: (Update parameters) lexical generation function

Output: Parameters 6 and lexicon A

Initialize 6 using Ay , A < Ag
Fort=1...T,1=1...n:

Step 1: (Lexical generation)

a. Set \q¢ <~ GENLEX (x;,V;; A\, 0),
A< AU\

b. Let Y be the £ highest scoring parses from

c. Select lexical entries from the highest scor-

ing valid parses:

Ai = Uyenraxviyo LEX(y)
d. Update lexicon: A < A U A,

Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Generate a large set of

potential lexical entries

6 weights
T; sentence

V; validation function
GENLEX (x;,V;; A, 0)

lexical generation function

Procedure to propose
potential new lexical
entries for a sentence

Initialize 6 using Ay , A < Ag
Fort=1...T,1=1...n:

Step 1: (Lexical generation)
a. Set Aq < GENLEX (z;,Vi; A, 6), Generate a large set of

A AUAG | potential lexical entries
b. Let Y be the £ highest scoring parses from
c. Select lexical entries from the highest scor- 0 weights
ing valid parses: T; sentence
Ai = Uyemraxviyv.o LEX (y) V; validation function
d. Update lexicon: A < A U A, GENLEX (z;,Vi; A, 6)
Step 2: (Update parameters) lexical generation function

Output: Parameters 6 and lexicon A

V.Y =it f

Y all parses

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)

a. Set \q¢ < GENLEX (x;,V;; A\, 0),
A< AU

b. Let Y be the £ highest scoring parses from
GEN (z:;) Get top parses

c. Select lexical entries from the highest scor-
ing valid parses:

Ai = Uyemaxv,ivio) LEX (y)
d. Update lexicon: A <~ AU \; GEN(z;; A) set of all parses

T; sentence

k beam size

Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)

a. Set \q¢ < GENLEX (x;,V;; A\, 0),

A< AU
b. Let Y be the £ highest scoring parses from
c. Select lexical entries from the highest scor- hi gh est scorin g valid

ing valid parses:

Ai = Uyenmraxvvio LEX () parses

d. Update lexicon: A <~ A U);
Step 2: (Update parameters)

Get lexical entries from

6 weights
) validation function
Output: Parameters 6 and lexicon A LEX (y) set of lexical entries
¢i(y) = o(xi,y)
MAXVi(Y;0) ={yly € Y AVi(y)A
Vy' e Y.V;(y) =
0, 2i(y")) < (0, Pi(y))}

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)
a. Set \q¢ < GENLEX (x;,V;; A\, 0),
A< AU
b. Let Y be the £ highest scoring parses from
c. Select lexical entries from the highest scor-
ing valid parses:

Ai = Uyemraxv,vio) LEX(Y)
d. Upd&t@ lexicon: A «+— A U)\z Update model’s Iexicon
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Initialize 6 using Ag , A < Ag

Fort=1...T,»=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; « MAXV;(GEN (x;;\);0)
and B; + {6‘6 ~ GEN(ZL‘Z, A) N\ ﬁVz(y)}
b. Construct sets of margin violating good and
bad parses:

R; + {glg € G; N3Tb e B,
s.t. (0, @;(g) — P;i(b)) < vAi(g,b)}
EZ%{[)V)EBZ A dg € G;
s.t. (0, ®;(g) — P;i(b)) < vAi(g,b)}
c. Apply the additive update:
0 < 0+ Ile'l ZreRi b, (r)
— 5] Leen; Pile)

Output: Parameters 6 and lexicon A

Initialize 6 using Ag , A < Ag

Fort=1...T,»=1...n:

Step 1: (Lexical generation)

Step 2: (Update parameters) Re-parse and group all
a. Set G; «+ MAXV;(GEN (x;;\);0) : ¢ y
and B; + {ele € GEN(z:A) A -Wi(y)} | Parses into good’ and
b. Construct sets of margin violating good and ‘bad’ sets
bad parses:
R; +{glg € G; ATb e B; 0 weights

s.t. (0, @;(g) — ©;(b)) < vAi(g,b)}
E; < {blb € B; N3g € G; T |
V; validation function
s.t. (0, ®;(g) — Pi(b)) < vAi(g,b)} N (o) ot of
c. Apply the additive update: (zi; A) set of all parses
0 0+ 1 > en, Pilr) ¢i(y) = d(z4, y)
— 157 2oeer; Pile) Vi(Y;0) = {yly € Y A Vi(y)A

. vy € YVi(y) =
Output: Parameters 6 and lexicon A 0, ®;(y")) < (0, ®;(y))}

T; sentence

Initialize 6 using Ag , A < Ag

Fort=1...T,»=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; « MAXV;(GEN (x;;\);0)
and B; + {6‘6 ~ GEN(ZL‘Z, A) N\ ﬁVz(y)}
b. Construct sets of margin violating good and
bad parses:

R; + {glg € G; N3Tb e B,
s.t. (0, ®;(g) — ®i(b)) < vAi(g,b)}
EZ%{Z?V)EBZ A dg € G;
s.t. (0, ®i(g) — Pi(b)) < vAi(g,b)}
c. Apply the additive update:
0 0+ 73, cp D)
_|le| ZBEEZ ®Z(€)

Output: Parameters 6 and lexicon A

For all pairs of ‘good’
and ‘bad’ parses, if their
scores violate the

margin, add each to
‘right’ and ‘error’ sets
respectively

6 weights

v margin

¢i(y) = (i, y)

Ai(y,y') = |2i(y) — 2i(y')

Initialize 6 using Ag , A < Ag

Fort=1...T,»=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)
a. Set G; « MAXV;(GEN (x;;\);0)
and B; + {6‘6 ~ GEN(ZCZ, A) N\ ﬁV@(y)}
b. Construct sets of margin violating good and
bad parses:

R; + {glg € G; N3Tb e B,

s.t. (0, P;(g) —Pi(b)) < vAi(g,b)}
EZ%{[)“?EBZ A dg € G;

s.t. (0, ®i(g) — Pi(b)) < vAi(g,b)}
c. Apply the additive update:

00+ Y, cp, Bilr)
_ﬁ ZeEEZ q)z(e)

Output: Parameters 6 and lexicon A

Update towards
violating ‘good’ parses

and against violating ‘bad’
parses

6 weights
¢i(y) = &4, y)

Initialize 6 using Ay , A < Ag

Fort=1...T,1=1...n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters 6 and lexicon A

Return grammar

6 weights

A lexicon

Features and Initialization

* Parse:indicate lexical entry and combinator use
e Logical form:indicate local properties of logical
forms, such as constant co-occurrence

e Often use an NP list
e Sometimes include additional, domain
independent entries for function words

Lexicon

Initialization

Initial * Positive weight for initial lexical indicator
Weights features

Unified Learning Algorithm

) validation function
GENLEX (z,V;)\, 0)

lexical generation function

® Two parts of the algorithm we still need to define

® Depend on the task and supervision signal

Unified Learning Algorithm
y

Template-based GENLEX
Unification-based GENLE X

Weakly Supervised
S

Template-based GENLEX

\.)

Supervised Learning

show me the afternoon flights from LA to boston

Ax. flight(x) A during(x, AFTERNOON) A from(x, LA) A to(x, BOS)

Supervised Learning

show me the afternoon flights from LA to boston

Ax. flight(x) A during(x, AFTERNOON) A from(x, LA) A to(x, BOS)

Parse structure is latent

Supervised Learning

Supervised

S
Template-based GENLEX

Unification-based GENLE X

Supervised Validation
Function

® Validate logical form against gold label

V.(y)) — true if LF(y) = z;
)= false else
Yy parse

z; labeled logical form

LF(y) logical form at the root of y

Supervised Template-based
GENLEX (x,z: A\, 0

]

Lexicon Wéights

Sentence

Small notation abuse:
take labeled logical

form instead of
validation function

Supervised Template-based
GENLEX (x,z;\,0)

| want a flight to new york
Ax. flight(x) N to(x, NYC)

Supervised Template-based
GENLEX

® Use templates to constrain lexical entries
structure

® For example: from a small annotated dataset

Mw,{v;}7).lw b ADJ : Ax.vi(x)]
AMw,{v;}}).lwFE PP : Az y.v1(y,)]

AMw, {v;}7).JwhE N Az.vi (o))

AMw, {v; 1) Jw - S\NP/NP : Ax.\y.vi(z,y)]

[Zettlemoyer and Collins 2005]

Supervised Template-based
GENLEX

Need lexemes to instantiate templates

U).wtH ADJ : Ax.vi(x))
U).wtH PP : Az \y.vi(y,x)
w, {vi}) [B N s Az ()]
T)lw b S\NP/NP : Az)\y.vi(x,y)]

Supervised Template-based
GENLEX (x,z;\,0)

| wanta flight to new york
All possible)\x.flight(f) A tO(Z, NYC)

sub-strings

I want

a flight
flight

flight to new

Supervised Template-based
GENLEX (x,z;\,0)

| want a flight to new york
Ax. flight(x) N to(x, NYC)

All logical
constants from

want . labeled logical form
a flight flight -
flight to (

flight to new NYC

Supervised Template-based
GENLEX (x,z;\,0)

| want a flight to new york
Ax. flight(x) N to(x, NYC)

I want (flight, { flight})

a flight flzght I want {}
mae Y to \|»
flicht to new (flight to new, {to, NYC'})

Create
lexemes

Supervised Template-based
GENLEX (x,z;\,0)

| want a flight to new york
Ax. flight(x) N to(x, NYC)

I want -
flight
a flight
flight x to
flight to new NYC(C
¥ Initialize
(flight, { flight}) temPIates flight = N : Ax.flight(x)

[want = S/NP : \x.x
flight to new : S\NP/NP : Az.\y.to(x,y)

(I want, {}) ‘I
(flight to new, {to, NYC'})

Fast Parsing with Pruning

® GENLEX outputs a large number of entries

® For fast parsing: use the labeled logical form
to prune

® Prune partial logical forms that can’t lead to
labeled form

| want a flight from New York to Boston on Delta
Ax.from(x, NYC') A to(xz, BOS) A carrier(x, DL)

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Ax.from(x, NYC') A to(z, BOS) A carrier(x, DL)

from New York to Boston

PP/NP NP PP/NP NP
Ax. Ay.to(y, x) NYC Az)\y.to(y,z) BOS

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Ax.from(x, NYC') A to(z, BOS) A carrier(x, DL)

from New York to Boston
PP/NP NP PP/NP NP
Ax. \y.to(y, x) NYC Xx.\y.to(y,x) BOS
PP . PP .

Ay.to(y, NY C) Ay.to(y, BOS)

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Ax.from(x, NYC') A to(z, BOS) A carrier(x, DL)

from New York to Boston
PP/NP NP PP/NP NP
Ax. \y.to(y, x) NYC Xx.\y.to(y,x) BOS
PP . PP .

Ay.to(y, NY C) Ay.to(y, BOS)

X

Fast Parsing with Pruning

| want a flight from New York to Boston on Delta
Ax.from(x, NYC') A to(z, BOS) A carrier(x, DL)

from New York to Boston

PP/NP NP
Ax. \y.to(y,x) BOS

PP
Ay.to(y, BOS)
N\N
AfAy-f(y) A to(y, BOS)

>

Supervised Template-based
GENLEX

Summary

No initial expert knowledge
Creates compact lexicons 4

Language independent

Representation independent

Easily inject linguistic knowledge

<R

Weakly supervised learning

Unification-based GENLEX

® Automatically learns the templates

- Can be applied to any language and many different
approaches for semantic modeling

® [wo step process
= |nitialize lexicon with labeled logical forms

- “Reverse” parsing operations to split lexical
entries

[Kwiatkowski et al. 2010]

Unification-based GENLEX

® |nitialize lexicon with labeled logical forms

For every labeled training example:

| want a flight to Boston
Ax. flight(x) A to(z, BOS)

Initialize the lexicon with:
I want a flight to Boston .5 : Az. flight(x) A to(x, BOS)

Unification-based GENLEX

® Splitting lexical entries

[want a flight to Boston - S : Az. flight(x) A to(x, BOS)

\ 4

[want a flight = S/(S|NP) : Af A\x. flight(x) A f(x)
to Boston - S|NP : \x.to(x, BOS)

Unification-based GENLEX

® Splitting lexical entries

[want a flight to Boston - S : Az. flight(x) A to(x, BOS)

\ 4

[want a flight = S/(S|NP) : Af A\x. flight(x) A f(x)

to Boston - S|NP : \x.to(x, BOS)
—

Many possible
phrase pairs

Many possible
category pairs

Unification-based GENLEX

® Splitting CCG categories:

|. Split logical form i to fand g s.t.

f(g) =h or Az.f(g(x)) = h

A x. flight(z) A f(x)
Ax.to(x, BOS)

S : Ax.flight(x) A to(x, BOS) ||»
Ay x. flight(x) N f(z,y)
BOS

Unification-based GENLEX

® Splitting CCG categories:

|. Split logical form i to fand g s.t.

f(g) =h or Az.f(g(x)) = h

2. Infer syntax from logical form type

S/(S|NP) : Af. x.flight(z) N f(x)
SINP : \x.to(x, BOS)

S Ar. flight(zx) Atolw, BOS) "» SINP : hy Xz flight(z) A f(z,y)

NP : BOS

Unification-based GENLEX

® Split text and create all pairs

I want a flight to Boston .S : Az. flight(x) A to(x, BOS)

\ 4

[want S/(SINP):AfAx.flight(z) A f(z)
a flight to Boston SINP : Az.to(x, BOS)

[want a flight S/(S|NP): Xf. x.flight(x) A f(x)
to Boston SINP : \x.to(x, BOS)

Unification-based
GENLEX (x,z;\,0

\

Lexicon Weights

Sentence

|. Find highest scoring correct parse
2. Find split that most increases score

3. Return new lexical entries

Parameter Initialization

Compute co-occurrence (IBM Model 1)
between words and logical constants

I want a flight to Boston

N

S : dx.flight(x) A to(xz, BOS)

Initial score for new lexical entries: average
over pairwise weights

Unification-based
GENLEX (x,z;\,0)

| want a flight to Boston
Ax. flight(x) A to(x, BOS)

Unification-based
GENLEX (x,z;\,0)

| want a flight to Boston ,
Az. flight(z) A to(xz, BOS) |

|. Find highest scoring I want a flight to Boston

S

correct parsec
Ax. flight(x) A to(z, BOS)

2. Find splits that most
Increases score

3. Return new lexical
entries

| want a flight to Boston

Unification-based
GENLEX (x,z;\,0)

Ax. flight(x) A to(x, BOS) I want a flight to Boston

: S/(S|NP) S|NP
Af. Az flight(x) A f(x) Az.to(x, BOS)

N

I want a flight to Boston

S
Ax. flight(x) A to(z, BOS)

. Find highest scoring
correct parse

. Find splits that most
InCreases score

. Return new lexical
entries

| want a flight to Boston

Unification-based
GENLEX (x,z;\,0)

Ax. flight(x) A to(x, BOS) I want a flight to Boston

: S/(S|NP) S|NP
Af. Az flight(x) A f(x) Az.to(x, BOS)

N/

I want a flight to Boston

S
Ax. flight(x) A to(x, BOS)

. Find highest scoring
correct parse

. Find splits that most
InCreases score

. Return new lexical
entries

Unification-based
GENLEX (x,z;\,0)

| want a flight to Boston
Az. flight(z) A to(xz, BOS) |

I want a flight to Boston
|. Find highest scoring | S/(SINP) SINP
correct parse b N x. flight(z) A f(z) Ax.to(z, BOS)
2. Find splits that most 5 g

increases score Az. flight(x) A to(xz, BOS)

3. Return new lexical
entries

|teration 2 i

Unification-based

GENLEX (z,z; A, 0)
| want a flight to Boston , to Boston
fli (S|NP) /NP NP
Ax. flight(x) A to(x, BOS) | Ny ol.)
. Find highest scoring \ T
correct parse [want a flight to Boston
. Find splits that most ! S/(SINP) SINP
Increases score i AfAw flight(z) A f(z) Az.to(z, BOS)
. Return new lexical | S g

entries Ax. flight(z) A to(x, BOS)

lteration 2 ;

Unification-based

GENLEX (z,z; A, 0)
| want a flight to Boston , to Boston
fli (S|NP) /NP NP
Ax. flight(x) A to(x, BOS) | Ny ol.)
. Find highest scoring \ T
correct parse I want a flight to Boston
. Find splits that most S/(SINP) SINP
Increases score i Af Az flight(z) A f(z) Az.to(z, BOS)
. Return new lexical | S g

e T Ax. flight(z) A to(x, BOS)

lteration 2 ;

Experiments

® [wo database corpora:
- GGOSSO/G 60250 [Zelle and Mooney 1996;Tang and Mooney 2001]

- ATIS [Dahl et al. 1994]

® | earning from sentences paired with logical
forms

® Comparing template-based and unification-
based GENLEX methods

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 201]

Results

B Template-based [Unification-based B Unification-based + Factored Lexicon

90

67.5

45

22.5

Geo5>80 AT Geo 250 5 /Ge0250
Slisf,

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 201 1]

GENLEX Comparison

Templates Unification

No initial expert knowledge 4
Creates compact lexicons 4

Language independent 4

Representation independent v

Easily inject linguistic knowledge

$ R

Weakly supervised learning

GENLEX Comparison

Templates Unification

No initial expert knowledge 4
Creates compact lexicons 4

Language independent 4

Representation independent v

Easily inject linguistic knowledge

$ R

Weakly supervised learning

Recap
CCGs

CCG 1S fun

NP S\NP/ADJ ADJ
CCG Af)x.f(x) Ax.fun(z)
>

S\NP

S
fun(CCG)

[Steedman 1996, 2000]

Recap
Unified Learning Algorithm

Initialize 6 using Ag , A < Ay

Fort=1...T,1=1...n:

° :
Step 1: (Lexical generation) Online

Step 2: (Update parameters) o) StePS'

Output: Parameters 6 and lexicon A
= Lexical generation

= Parameter update

Recap

Learning Choices

Validation Function

VY- {t, f} GENLEX (z,V; A, 0)
¢ Indicates correctness e Given:
of a parse y sentence I
e Varying) allows for validation function V
lexicon A

differing forms of

supervision parameters ¢

* Produce a overly general
set of lexical entries

Unified Learning Algorithm
y

Template-based GENLEX
Unification-based GENLE X

Weakly Supervised
S

Template-based GENLEX

\.)

Weak Supervision

What is the largest state that borders Texas?

New Mexico

[Clarke et al. 2010; Liang et al. 201]

Weak Supervision

What is the largest state that borders Texas?

New Mexico

at the chair, move forward three steps past the sofa

[Clarke et al. 2010; Liang et al. 201 |; Chen and Mooney 201 |; Artzi and Zettlemoyer 2013b]

Weak Supervision

What is the largest state that borders Texas?

New Mexico

at the chair, move forward three steps past the sofa

Execute the logical form and observe the result

Weakly Supervised
Validation Function

Vi(y) — true if EXEC(y) = e;
)= false else

y €) parse
e; € £ available execution result

EXEC(y):Y — &

logical form at the root of y

[Artzi and Zettlemoyer 2013b]

Weakly Supervised
Validation Function

Vi(y) — true if EXEC(y) = e;
)= false else

Domain-specific | y e Y parse
execution function:| e; € £ available execution result
SQL query engine, | EXEC(y): YV — &
navigation robot logical form at the root of y

Weakly Supervised

Validation Function evends on

/- supervision
{true if EXEC(y) = ez

false else

Vi(y) =

Domain-specific | y e Y parse
execution function:| e; € £ available execution result
SQL query engine, | EXEC(y): YV — &
navigation robot logical form at the root of y

Weakly Supervised
Validation Function

Depends on
/— supervision
{true if EXEC(y) = ez

false else

Vi(y) =

Domain-specific | y e Y parse
execution function:| e; € £ available execution result
SQL query engine, | EXEC(y): YV — &
navigation robot logical form at the root of y

In general: execution function is a natural
part of a complete system

Weakly Supervised

Validation Function
Example EXEC(y):

Robot moving in an environment

Weakly Supervised

Validation Function
Example EXEC(y):

Robot moving in an environment

Example supervision:

o, $d § 99
® <« < < <

Weakly Supervised

Validation Function
Example EXEC(y):

Robot moving in an environment

Example supervision:

Complete € 9 B 9 9
Demonstration \#y_ i i\i :\i j\i

® 4 < < <«

Validate all steps

Weakly Supervised

Validation Function
Example EXEC(y):

Robot moving in an environment

Example supervision:

e
Final State \#‘L

Validate only last ‘

position

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york
Ax. flight(x) N to(x, NYC)

I want -
flight
a flight
flight x to
flight to new NYC(C
‘ Initialize
(flight, { flight}) templates flight = N : Ax.flight(x)

[want = S/NP : \x.x
flight to new : S\NP/NP : Az.\y.to(x,y)

(I want, {}) ‘I
(flight to new, {to, NYC'})

[Artzi and Zettlemoyer 201 3b]

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

)

I want

a flight x No access to
fligh

Sht labeled logical form

flight to new

Initialize
(light, { flzght}) templates flight - N : Az. flight(x)

(I want, {}) ‘I [want = S/NP : \x.x
(flight to new, {to, NYC'})

flight to new : S\NP/NP : Az.\y.to(x,y)

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

I want flight, from,to,

a flight

flight x ground_transport, dtime, atime,
flight to new NYC,BOS,LA,SFEA,...

Use all logical

constants in the
system instead

¥ Initialize

(flight, { flight}) temPIates flight = N : Ax.flight(x)

(I want, {}) ‘I [want = S/NP : \x.x
(flight to new, {to, NYC'})

flight to new : S\NP/NP : Az.\y.to(x,y)

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

I want flight, from,to,

a flight

flight x ground_transport, dtime, atime,
flight to new NYC,BOS,LA,SFEA,...

Use all logical

constants in the
system instead

‘ Initialize

(flight, { flight}) temP|ateS flight = N : Ax.flight(x)

(I want, {}) ‘I [want = S/NP : \x.x
(flight to new, {to, NYC'})

flight to new : S\NP/NP : Az.\y.to(x,y)

Many more Huge number of
lexemes lexical entries

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

flight, from,to,

ag;gt x ground_transport, dtime, atime,
" NYC,BOS,LA,SEA,...
¥ flight H N : Ax. flight(x)
(fight, {light}) [want = S/NP : \x.x

(I want, {})
(flight to new, {to, NYC'})

)

flight to new : S\NP/NP : Ax.\y.to(z,y)

Parse to prune
generated lexicon

— Huge number of
‘ lexical entries

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

flight, from,to,

ag;gt x ground_transport, dtime, atime,
" NYC,BOS,LA,SEA,...
¥ flight H N : Ax. flight(x)
(fight, {light}) [want = S/NP : \x.x

(I want, {})
(flight to new, {to, NYC'})

I
» flight to new : S\NP/NP : Az.\y.to(x,y)

Parse rune
gener xicon
Intractable Model

= Huge number of
‘ lexical entries

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

I want
a flight
flight x
flight to new
Initialize
(fight, {flzght}) temPIates flight = N : Ax.flight(x)

(I want, {}) ‘I [want = S/NP : \x.x
(flight to new, {to, NYC}) flight to new : S\NP/NP : Az.\y.to(x,y)

Weakly Supervised
GENLEX (z,V; A\, 0)

® Gradually prune lexical entries using a coarse-
to-fine semantic parsing algorithm

® Transition from coarse to fine defined by
typing system

Coarse Ontology

tr flight<fl,t> ; fT0m<fl,<l0c,t>> , 1O« f1.<loc,t>>
flCL ground_transport < gt >, ALime «ir <ti t>>, GUME < tr <ti t>>,

|7 1 NYCois BOS:i, JFKop, LASop...

gt

: Coarse Ontology

fr fl’ight<fl,t> ; f"“0m<fl,<loc,t>> , PO« £l <loc,t>>
flCL 97“0und—t"“a715p0"°t<gt,t>a dtim€<tr,<tz‘,t>>a atim€<tr,<tz‘,t>>a
Iifl NYC’Ci,BOSCZ-,JFKap,LASap,...

gt

‘ Generalize types

flzght<e,t>, fr0m<€,<€,t>>7 t0<e,<e,t>>7
gmund_transport@,b, dtim6<€,<e,t>>, atiMece <et>>

flight<fit> | nve,, BOS., LA, SEA., ...

m fl—e
‘ t—st

flight<e,t>

Coarse Ontology

fr fl’ight<fl,t> ; f7“0m<fl,<loc,t>> , PO« £l <loc,t>>
flCL 97“0und—t"“ansp0"°t<gt,t>a dtim€<tr,<tz‘,t>>a atim€<tr,<tz‘,t>>a
Iifl NYC’Ci,BOSCZ-,JFKap,LASap,...

gt

‘ Generalize types

flzght<e,t>7 f7“0m<e,<e,t>>a t0<e,<e,t>>7
gmund_transport@,b, dtim6<€,<e,t>>, atiMece <et>>

NYC,, BOS,, LA, SEA,, ...

— Merge identically
typed constants

Cl<€,t>7 62<€,<€,t>>7 Cley . - -

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york
All possible
sub-strings

I want C1<e,t>
a flight

c2 t
flight SGSet>2

flight to new C3e

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york
All possible
sub-strings

(flight, {c1})
a flight | (I want, {})
. C2<e,<et>> ‘I .
flight (flight to new, {c2})

flight to new

Create
lexemes

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

I want Cl<e,t>
a flight

c2 t
flight x Seset>>
flight to new C3e

e

St o flight = N : Az.cl(x)

flight, {cl

(1 \iant,{}) "» [want = S/NP : \x.x

(Hight to new, {¢2}) flight to new = S\NP/NP : Ax.\y.c2(z,y)

Initialize ---
templates

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

I want Cl<e,t>

a flight 2 ,

nge P Coarse
CIe

flight to new

e

St o flight = N : Azlel(x)

flight, {cl

(1 \iant,{}) "» [want = S/NP : \x.x

(Hight to new, {¢2}) flight to new = S\NP/NP : Ax. \yic2(z, y)

constants

Initialize ---
templates

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

flight = N : Az.cl(x)
Prune by [want = S/NP : \x.x
parsing flight to new = S\NP/NP : Az.\y.c2(z,y)

Keep only lexical entries that participate in
complete parses, which score higher than the
current best valid parse by a margin

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york

flight = N : Az.cl(x)

Prune by =-vermrt—SrApmg—
parsing —Hiehddonem = SO DDA D D Do Locyo

Keep only lexical entries that participate in
complete parses, which score higher than the
current best valid parse by a margin

Weakly Supervised
GENLEX (z,V; A, 6)

| want a flight to new york
flight F N : Axiel(x)

Replace all coarse constants with
all similarly typed constants

Hight

Hight
Hight

Hight

¥

: Ax. flight(x)
. Ax.ground_transport(x)
. Ax.nonstop(x)

. Ax.connecting(x)

Weak Supervision
Requirements

® Know how to act given a logical form
® A validation function

® Templates for lexical induction

Experiments

Instruction:
at the chair, move forward three steps past the sofa
Demonstration:

® Situated learning with joint inference

® [wo forms of validation

® Template-based GENLEX (x,V; A, 0)

[Artzi and Zettlemoyer 201 3b]

80

64

48

32

|6

Results

" Final State Validation
™ Trace Validation

Single Sentence

Sequence

Logical Form

Unified Learning Algorithm
Extensions

® | oss-sensitive learning
- Applied to learning from conversations
® Stochastic gradient descent

- Approximate expectation computation

[Artzi and Zettlemoyer 201 |; Zettlemoyer and Collins 2005]

Parsing Learning Modeling

e Structured perceptron

* A unified learning algorithm

* Supervised learning

* Weak supervision

Modeling

Show me all papers about semantic parsing

‘Parsmg with CCG

Ax.paper(x) N topic(x, SEM PAR)

Modeling

Show me all papers about semantic parsing

‘Parsmg with CCG

Ax.paper(x) A topic(x, SEM PAR)

What should these logical forms look like?

But why should we care!

Modeling Considerations

Modeling is key to learning compact
lexicons and high performing models

® Capture language complexity
® Satisfy system requirements

® Align with language units of meaning

Parsing Learning Modeling

* Semantic modeling for:
- Querying databases
- Referring to physical objects

- Executing instructions

Querying Databases

Mountains
Bianca CcO

AL Montgomery 3.9
Antero CcO
AK Juneau 0.4 Rainier WA
AZ Phoenix 2.7 — — Shasta | CA
Wrangel AK

WA Olympi 4.1
ympt Sill CA

NY Albany 7.5
Il Sprinsfield]

[Zettlemoyer and Collins 2005]

Querying Databases

L
P.

AL N 30 WA OR Bianca CO
ontgomery :
WA 1D Antero cO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta | CA

What is the capital of Arizona!
How many states border California?

What is the largest state?

Querying Databases

L
P.

AL N 30 WA OR Bianca CO
ontgomery .
WA 1D Antero cO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta CA

What is the capital of Arizona!
How many states border California?

What is the largest state?

Querying Databases

L
P.

AL N 30 WA OR Bianca CO
ontgomery :
WA 1D Antero cO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta CA

What is the capital of Arizona?

How many states - California?

What is the largest state?

Querying Databases

L
P.

AL N 30 WA OR Bianca CO
ontgomery :
WA ID Antero CcO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2.7 Shasta CA

What is the capital of Arizona?

How many states border California?

What is the largest state?

Querying Databases

L
P.

AL N 30 WA OR Bianca CcO
ontgomery :
WA ID Antero CcO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta CA

What is the capital of Arizona?

How many states border California?

What is the largest state?

Querying Databases

L
P.

AL N 30 WA OR Bianca CO
ontgomery :
WA ID Antero CcO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta CA

What is the capital of Arizona?

How many states border California? Superlatives

What is the [largest state?

Querying Databases

P.

AL N 30 WA OR Bianca CcO
ontgomery :
WA ID Antero CcO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2. Shasta CA

What is-capital of Arizona?

How many states border California?

What is-largest state?

Querying Databases

P

AL N 30 WA OR Bianca CcO
ontgomery .
WA ID Antero CO
AK Juneau 0.4 CA OR Rainier WA
CA NV
AZ Phoenix 2.7 Shasta | CA

-is the capital of Arizona!

How many states border California?

-is the largest state!

Referring to DB Entities

Noun phrases | Select single DB entities

Prepositions . .
Relations between entities
Verbs

Typing (i.e., column headers)

Superlatives Ordering queries

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany

CSprinof

Noun Phrases

Mountains

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

Noun phrases name
specific entities

Washington
WA

Florida

The Sunshine State
FL

al

AL Montgome

AK Juneau

AZ Phoenix

WA Olympia

NY Albany
1 Springf

Noun Phrases

Mountains

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

e-typed

entities

Noun phrases name
specific entities

Washington
WA

Florida

The Sunshine State
FL

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany

CSprinof

Noun Phrases

Mountains

Noun phrases name
specific entities

Washington

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

NP
WA

The Sunshine State

NP
FL

Verb Relations

Border Verbs express relations
| between entities

WA OR

AL Montgomer wa | 0 | Nevadalborders California
AK Juneau CA | OR | border(NV,CA)

| CA NV
AZ Phoenix
WA Olympia
NY Albany
I Sprinocf

Verb Relations

Border Verbs express relations
| between entities

WA OR

AL Montgomer wa | 0 | Nevadalborders California
AK Juneau CA | OR | border(NV,CA)

| CA NV
AZ Phoenix t’]"ue
WA Olympia
NY Albany
I Sprinocf

AL Montgome
AK Juneau
AZ Phoenix
WA Olympi:
NY Albany
1 Sprin

Verb Relations

- Nevada

NP
NV

borders

S\NP/NP

Ax. Ay.border(y, x)

California

NP
CA

S\NP

Ay.border(y, C'A)

S

border(NV,CA)

al

AL Montgome

AK Juneau

AZ Phoenix

WA Olympia

NY Albany
1 Sprinefi

Nouns

Mountains

Bianca

CcO

Antero CcO
Rainier WA
Shasta CA

Nouns are functions
that define entity type

state
Ax.state(x)

mountain

Ax.mountain(x)

al

AL Montgome

AK Juneau

AZ Phoenix

WA Olympia

NY Albany
Il Springf

Nouns

Mountains

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

e — 1

functions
define sets

Nouns are functions
that define entity type

state
Ax.state(x)

Do, . .}

mountain

Ax.mountain(x)

{(anca W anrero.

o

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
1 Springf

Nouns

Bianca C(
Antero C
Rainier W

Shasta

Nouns are functions
that define entity type

state

N
Ax.state(x)

mountain

N

Ax.mountain(x)

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
1 Springf

Prepositions

Mountains
Bianca cO
Antero CcO
Rainier WA
Shasta CA

Prepositional phrases are
conjunctive modifiers

mountain in Colorado

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
Il Springfi

Prepositions

Mountains
Bianca cO
Antero CcO
Rainier WA
Shasta CA

Prepositional phrases are
conjunctive modifiers

mountain

Ax.mountain(x)

{eance Wantero §
Ceanice IO

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
1 Springf

Prepositions

Mountains
Bianca cO
Antero CcO
Rainier WA
Shasta CA

Prepositional phrases are
conjunctive modifiers

mountain in Colorado

Ax.mountain(x)N

in(z, CO)

{eance Wanteo)

Prepositions

H mountain in Colorado

AL Montgom: N PP/NP NP
Ax.mountain(x) Ay x.an(x,y) CO

AK Juneau >
* PP

AZ Phoenix Ax.in(x, CO)

WA Olympi: N \N

-~ . A x. f(x) Nin(z, CO)<
‘ N

] Sprin Ax.mountain(x) N in(z, CO)

e

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany

Cprincf

Function Vords

| WA | OR
| wa | ID
CA | OR
CA | NV

Certain words are used to
modify syntactic roles

state that borders California
Ax.state(x) A border(x,CA)

.M, @}

AL Montgomer
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
IL Springfie

Function Vords

borders

California

S\NP/NP

Ax. Ay.border(y, x)

NP
CA

N\N
Af Y. f(y) A border(y, CA)

tal

AL Montgom:e

AK Juneau

AZ Phoenix

WA Olympiz

NY Albany
I Sprin

WA OR
WA ID

CA OR
CA NV

Function VWords

Certain words are used to
modify syntactic roles

 May have other senses
with semantic meaning

* May carry content in
other domains

Other common function
words: which, of, for, are, is,
does, please

Definite Determiners

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany

Cprinocf

il Mountains

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

Definite determiner
selects the single members
of a set when such exists

L: (e —>t) —e

the mountain in Washington

l Mountains
al

Definite Determiners

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
1 Sprinef

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

Definite determiner
selects the single members
of a set when such exists

L: (e —>t) —e

mountain in VWashington
Ax.mountain(x) Ain(z, W A)

(00 }

l Mountains
al

Definite Determiners

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany
1 Sprinef

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

Definite determiner
selects the single members
of a set when such exists

L: (e —>t) —e

the mountain in Washington

ve.mountain(x) A in(x, WA)

oD | =) D

Definite Determiners

l Mountains
al

Definite determiner
selects the single members

Bianca cO of a set when such exists

AL Montgome

| Antero CO
AK Juneau Rainier WA L . (6 : t) €
AZ Phoenix Shasta CA
WA Olympia the mountain in Colorado
NY Albany ve.mountain(x) N in(x, CO)
I Sprincf

(D D | =) ?

Definite Determiners

al

AL Montgome
AK Juneau
AZ Phoenix
WA Olympia
NY Albany

CSprinof

Definite determiner
selects the single members

Mountains

Bianca cO of a set when such exists
Antero CO

Rainier WA L : (6 % t) % 6
Chacta CA

the mountain in Colorado

ve.mountain(x) Ain(z, CO)

| =D | = X

No information to disambiguate

Definite Determiners

ita
AL | Montgom. the mountain in Colorado
NP/N
" - A.x. f(x)
AZ Phoeni> ‘ N
WA Olympi Ax.mountain(x) N in(z, CO)
* >
NY Albany NP
w vr.mountain(x) N in(x, CO)

Indefinite Determiners

tal

AL Montgome
AK Juneau
AZ Phoenix
WA Olympiz
NY Albany
I Springf

Mountains

Bianca CcO
Antero CcO
Rainier WA
Shasta CA

Indefinite determiners are
select any entity from a
set without a preference

A:(e—=t) —e

state with a mountain

Ax.state(x) N in(Ay.mountain(y), x)

[Steedman 201 |;Artzi and Zettlemoyer 2013b]

Indefinite Determiners

l Mountains
tal

Indefinite determiners are
select any entity from a

Bianca CO set without a preference

AL Montgome

| Antero CO
AK Juneau Rainier WA ./4 . (6 % t) % 6
AZ Phoenix Shasta CA
WA oympn State with a mountain
NY Albany - Ax.state(x) A in(Ay.mountain(y), v)
I CSprin ﬁ

Ax.state(x) A dy.mountain(y) A in(y, x)
Exists

[Steedman 201 |;Artzi and Zettlemoyer 2013b]

Indefinite Determiners

state with a mountain
N PP/NP NP/N N
Ax.state(x) Az Ay.in(z,y) Af.Az.f(z) Ax.mountain(z)
>
NP

Ax.mountain(x)

PP .
Ay.(Azxz.mountain(x),y)
N\N

Ay f(y) A (Ax.mountain(z), y)

<
N

Ay.state(y) A (Azx.mountain(x),y)

Indefinite Determiners

a

PP\(PP/NP)/N
AfAg) \y.3x.g(z,y) A f(x)
a a
S\NP\(S\NP/NP)/N ‘I» NP/N
Af-Ag-Ay.3z.g(x,y) A flz) M. Ax. f(x)
S\(S\NP)/N

Af g A \y.dx.g(x,y) A f(x)

Using the indefinite quantifier simplifies CCG
handling of the indefinite determiner

Superlatives

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 7.5
I Springfield |]

Superlatives select optimal
entities according to a measure

the largest state
argmazx(Azx.state(x), Ay.pop(y))

Min or max ..over this ..according to
this measure

set
{D,09, R
AK 0.4
)
Yo o0 Seattle 2.7

San Francisco | 4.I
NY 7.5

Superlatives

AL Montgomery 3.9

AK Juneau 0.4

AZ Phoenix 2.7

WA Olympia 4.1

NY Albany 7.5
I Springfield |]

Superlatives select optimal
entities according to a measure

the largest state
argmazx(Azx.state(x), Ay.pop(y))

Min or max ..over this ..according to
set this measure

AL 3.9

Seattle 2.7

San Francisco | 4.I
NY 7.5

Superlatives

state

N

Ax.state(x)

WA

>

Oly: NP

NY

argmax(Ax.state(x), Ay.pop(y))

IL

AL Montg
AK Jun
AZ Pho
WA Oly
NY Alb

IL

Spi

Superlatives

populated state
N N
Ax.pop(x) Az.state(x)
NP/N -
Af.argmazx(Ax. f(x), \y.pop(y))
>
NP

argmax(Az.state(x), \y.pop(y))

Representing Questions

P.

AL M 39 WA OR Bianca CcO
ontgomery :
WA ID Antero CO
AK luneau 0 CA OR

Which mountains are in Arizona? Represent questions as
the queries that generate

their answers

Representing Questions

L
P.

AL M 39 WA OR Bianca cO
ontgomery .
WA ID Antero CO
AK luneau 0 CA OR

Which mountains are in Arizona? Represent questions as
the queries that generate

SELECT Name FROM Mountains their answers

WHERE State == AZ
Reflects the query SQL

Representing Questions

L
P.

AL M 39 WA OR Bianca CcO
ontgomery :
WA ID Antero CO
AK luneau 0 CA OR

Which mountains are in Arizona? Represent questions as
the queries that generate

Ax.mountain(x) Ain(z, AZ) their answers

Reflects the query SQL

Representing Questions

L
P.

AL M 39 WA OR Bianca CcO
ontgomery :
WA ID Antero CO
AK luneau 0 CA OR

How many states border California? Represent questions as
the queries that generate

count(Ax.state(x) A border(xz,CA)) their answers

Reflects the query SQL

DB Queries

e Refer to entities in a database
So Far * Query over type of entities, order and other
database properties

* How does this approach hold for physical
objects!?
* What do we need to change? Add!?

Referring to Real World
Objects

[Matuszek et al. 2012a]

Referring to Real World
Objects

all the arches except the green arch

Referring to Real World
Objects

all the arches except the green arch

Referring to Real World
Objects

the blue triangle and the green arch

Referring to Real World
Objects

the blue triangle and the green arch

Plurality

arches
Ax.arch(x)

P

;

Plurality

arches
Ax.arch(x)

P

the arches
vr.arch(x

AR

;

Plurality

blue blocks
Ax.blue(x) A block(x)

¢}

brown block
Ax.brown(x) A block(x)

¥

Plurality

® All entities are sets

® Space of entities includes
singletons and sets of
multiple objects

Plurality

® All entities are sets

® Space of entities includes
singletons and sets of
multiple objects

Cognitive evidence

for sets being a
primitive type

[Scontras et al. 2012]

Plurality

Plurality is a modifier and
entities are defined to be
sets.

Plurality

Plurality is a modifier and
entities are defined to be

sets.

arch
Ax.arch(x) A sg(x)

Plurality

Plurality is a modifier and
entities are defined to be

.-- ey o3 .
A Y et
-~ " r;-‘. § 3 .
sets.
y
o o I

| \‘ﬂ \x.arch(x) A sg(x)
8 & T

T
" _&_:,‘?'. &gy}
e AT
~ - -
: P o
X X >

Plurality

Plurality is a modifier and
entities are defined to be

‘ sets.
|

arches

- v \‘ 5 AT. a?"ch()/\plu

" 1‘} }

gooo

. ‘ TE DD e
s e
T e A e

- =
- - =
. -

Plurality and Determiners

Definite determiner must
select a single set. E.g.,
heuristically select the
maximal set.

the arches
ve.arch(z) A plu(x

Adjectives

. ' - blue objects

ﬂ Az.blue(x) A obj(x) A plu(x)

\’

Adjectives are conjunctive
modifiers

L %

— SN
T W G
. S
- e
- v o
: X

Adjectives

Adjectives are conjunctive
modifiers

blue objects

\‘ﬂ Ax.blue(x) A obj(x) A plu(x)

S {&))

DBs and Physical Objects

® Describe and refer to entities

® Ask about objects and relations between
them

® Next: move into more dynamic scenarios

Beyond Queries

Nouns

Prepositional phrases :
. Constrain sets
Adjectives

[Questions Queries to generate response

Beyond Queries

Nouns

Prepositional phrases :
. Constrain sets
Adjectives

(Questions Queries to generate response

Works well for natural language interfaces for DBs

How can we use this approach for other domains?

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

go forward along the stone hall to the
intersection with a bare concrete hall

Verify(front: GRAVEL_HALL)
Travel()
Verify(side: CONCRETE_HALL)

[Chen and Mooney 201 []

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

leave the room and go right
do_seq(verify(room(current_loc)),
move_to(unique_thing(Azx.equals(distance(x),1))),

move_to(right_loc))

[Matuszek et al. 2012b]

Procedural Representations

® Common approach to represent
instructional language

® Natural for executing commands

Click Start, point to Search, and the click For Files and
Folders. In the Search for box, type “msdownld.tmp”.

LEFT _CLICK (Start)
LEFT _CLICK (Search)

TY PE_IN FO(Search for:, “msdownld.tmp”)

[Branavan et al. 2009, Branavan et al. 2010]

Procedural Representations

Dissonance between structure of
semantics and language

.

* Poor generalization of learned models

e Difficult to capture complex language

Spatial and Instructional Language

Name objects

Nouns

Prepositional phrases :
. Constrain sets
Adjectives

Instructions to execute

=
(Imperatives Sets of events

Modeling Instructions

Describing an Executing
environment Instructions

[Artzi and Zettlemoyer 201 3b]

Modeling Instructions

Describing an Executing
environment Instructions

& d

8

208)\
l

Agent

{

Modeling Instructions

Describing an Executing
environment Instructions

® Model actions and imperatives

® Consider how the state of the agent influences its
understanding of language

Modeling Instructions

place your back against the
wall of the t intersection

turn left

go forward along the pink
flowered carpet hall two
segments to the

intersection with the brick
hall

Instructional Environment

® Maps are graphs of
connected positions

® Positions have properties and
contain objects

Instructional Environment

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

® (lusters capture objects

Instructional Environment

2 3 4 5

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

® (lusters capture objects

Instructional Environment

2 3 4 5

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

® (lusters capture objects

Instructional Environment

I 2 3 4 5

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

® (lusters capture objects

Instructional Environment

® Agent can move forward,
turn right and turn left

® Agent perceives clusters of
positions

® (lusters capture objects

Instructional Environment

® Refer to objects similarly to
our previous domains

® “Query” the world

Grounded Resolution of
Determiners

Nouns denote sets of
objects

chair

Ax.chair(x)

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Must disambiguate to
select a single entity

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Definite determiner
depends on agent state

Grounded Resolution of
Determiners

Definite determiner
selects a single entity

the chair

vx.chair(x)

Definite determiner
depends on agent state

Modeling Instructions

Events takin ..
5 Events refer to Implicit

environment requests

place in the
world

Modeling Instructions

Events taking
place in the

Events refer to Implicit

environment requests

walk forward twice
m—

Modeling Instructions

Events taking
place in the

Events refer to Implicit
environment requests

-

move twice to the chair 3

Modeling Instructions

Events taking
place in the
world

Events refer to Implicit
environment requests

need to
move first

at the chair, turn right }

——

Davidsonian Event Semantics

® Actions in the world are constrained by
adverbial modifiers

® [he number of such modifiers is flexible

Adverbial modification is thus seen to be logically on a par

with adjectival modification: what adverbial clauses modify is
not verbs, but the events that certain verbs introduce.

Davidson 1969 (quoted in Maienborn et al.2010)

[Davidson 1967]

Davidsonian Event Semantics

® Use event variable to represent events
® Verbs describe events like nouns describe entities

® Adverbials are conjunctive modifiers

Vincent shot Marvin in the car accidentally

da.shot(a, VINCENT, MARVIN)A

in(a, tr.car(x)) N\ intentional(a)

[Davidson 1967]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

Passive Marvin was shot by Vincent

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

Passive Marvin was shot (by-Vincent) Agent

optional in
passive

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

Passive Marvin was shot (by-Vincent) Agent.
optional in

Jda.shot(a, MARVIN) passive

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Active Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

Passive Marvin was shot (by-Vincent) Agent.
optional in

Jda.shot(a, MARVIN) passive

Can we represent such distinctions without

requiring different arity predicates!

[Parsons 1990]

Neo-Davidsonian Event
Semantics

® Separation between semantic and syntactic roles

® Thematic roles captured by conjunctive predicates

Vincent shot Marvin
da.shot(a, VINCENT, MARVIN)

¥

da.shot(a) A\ agent(a, VINCENT) A patient(a, MARV IN)

[Parsons 1990]

Neo-Davidsonian Event
Semantics

Vincent shot Marvin in the car accidentally

Jda.shot(a) N agent(a, VINCENT)N\
patient(a, MARVIN) A in(a,tx.car(x)) A —intentional(a)

® Decomposition to conjunctive modifiers
makes incremental interpretation simpler

® Shallow semantic structures: no need to
modify deeply embedded variables

[Parsons 1990]

Neo-Davidsonian Event
Semantics

da.shot(a) N agent(a, VINCENT)N
patient(a, MARV IN) N in(a, tx.car(x)) A ~intentional(a)

Without events:
shot(VINCENT, MARVIN, 1x.car(x), INTENTIONAL)

® Decomposition to conjunctive modifiers
makes incremental interpretation simpler

® Shallow semantic structures: no need to
modify deeply embedded variables

[Parsons 1990]

Representing Imperatives

move forward past the sofa to the chair

Representing Imperatives

[move]ﬁorward}ﬁ)ast the sofzﬂﬁzo the chairJ

Representing Imperatives

move forward [past the sofa|to the chair

Intermediate
position

Final position

Representing Imperatives

move forward [past the sofa|to the chair

Intermediate
position

Final position

® |mperatives define actions to be executed
® Constrained by adverbials

® Similar to how nouns are defined

Representing Imperatives

move forward [past the sofa|to the chair

Intermediate
position

Final position

® |mperatives are sets of actions

® Just like nouns: functions from events to truth

frev—t

Representing Imperatives

move forward [past the sofa|to the chair

Intermediate
position

Given a set, what do we actually execute!

Final position

Representing Imperatives

move forward [past the sofa|to the chair

Intermediate
position

Given a set, what do we actually execute!

® Need to select a single action and execute it

Final position

® Reasonable solution: select simplest/shortest

Modeling Instructions

* Imperatives are sets of
events

* Events are sequences of
identical actions

Move

Aa.move(a)

{ = o -

Modeling Instructions

* Imperatives are sets of
events

* Events are sequences of
identical actions

Move

Q. move

Disambiguate by preferring
shorter sequences ¢

Modeling Instructions

Events can be modified
by adverbials

move twice

Aa.move(a) N len(a, 2)

()

Modeling Instructions

Events can be modified
by adverbials

go to the chair

Aa.move(a)\

to(a, tx.chair(x))

(-

Modeling Instructions

g0 to the chair
S AP/NP NP/N N
Aa.move(a) Ax.da.to(a,z) Afax.f(x) Ax.chair(x)
NP .
vx.chair(x)
AP)
Aa.to(a, tx.chair(x))
S\S
Af.Aa.f(a) Ato(a, tx.chair(x))
<
S

Aa.move(a) N to(a, tx.chair(z))

Treatment of events and their adverbials is similar
to nouns and prepositional phrases

Modeling Instructions

Implicit Actions

Dynamic Models

Dynamic

K

Models

World model changes
during execution

move until you reach the chair

o Aa.move(a)N

post(a, intersect(tx.chair(x), you))

Dynamic

¥

Models

World model changes
during execution

move until you reach the chair

o Aa.move(a)N

post(a, intersect(tx.chair(x), you))

Dynamic

¥

Models

World model changes
during execution

move until you reach the chair

o Aa.move(a)N

post(a, intersect(tx.chair(x), you))

Dynamic Models

World model changes
during execution

move until you reach the chair

o Aa.move(a)N

i
- post(a, intersect(tx.chair(x), you))

Update model to reflect state change

Dynamic

i

Models

World model changes
during execution

move until you reach the chair

o Aa.move(a)N

(E()stﬁa, intersect(tx.chair(x), you))
Update

Update model to reflect state change

Implicit Actions

K

Consider action assighments
with prefixed implicit actions

at the chair, turn left

A Aa.turn(a) A dir(a,left)A

pre(a, intersect(tx.chair(x), you))

Implicit Actions

¥

Consider action assighments
with prefixed implicit actions

at the chair, turn left

A Aa.turn(a) A dir(a,left)A

pre(a,intersect(tx.chair(x), you))

- Kl ==

Implicit Actions

¥

Consider action assighments
with prefixed implicit actions

at the chair, turn left

A Aa.turn(a) A dir(a,left)A

pre(a,intersect(tx.chair(x), you))

-BEE

Implicit actions

Experiments

Instruction:
at the chair, move forward three steps past the sofa
Demonstration:

® Situated learning with joint inference

® [wo forms of validation

® Template-based GENLEX (x,V; A, 0)

[Artzi and Zettlemoyer 201 3b]

Results
SAIL Corpus - Cross Validation

- Chen and Mooney 201 |
B Chen 2012

B Kim and Mooney 2012
| Final State Validation
B Trace Validation

Single Sentence Sequence

[Artzi and Zettlemoyer 201 3b]

More Reading about
Modeling

’ : '7!’.\‘:./7

Type-Logical Semantics
by Bob Carpenter

E Bob Carpenter

'} Type-Logica Semantics

[Carpenter 1997]

Today

~N

Parsing Combinatory Categorial Grammars

Learning Unified learning algorithm

Mlela il Best practices for semantics design

. J

Looking Forward

Looking Forward: Scale

) N

count(x) . Jy . award honor(y) A

See Cai and Yates 2013a,2013b award winner(y, z) A

award(y, peabody_award)

%’* - - 3
Answer any question DBped &'a |
posed to large, community |
h dd b What are the neighborhoods in New
authore atabases York City?
. Ax . neighborhoods(new_york, x)
Cha"enges - Lal’ge domalns How many countries use the rupee?
- Scalable aIgOritth count(x) . countries_used(rupee, x)
) Unseen WO I"CIS and How many Peabody Award winners are
concepts there?

Goal

Challenges

See

Looking Forward: Code

Program using natural
language

- Data
- Complex intent
- Complex output

Kushman and Barzilay

2013;Lei et al. 2013

(a) Text Specification:

The input contains a single integer T that indicates the
number of test cases. Then follow the T cases. Each test
case begins with a line contains an integer N, representing

the size of wall. The next N line

s represent the original

wall. Each line contains N characters. The j-th character of

the i-th line figures out the color ...

(b) Specification Tree:
the input

~ N

a single integer T tes

/

an integer N

(c) Two Program Input Examples:

t cases

AN

the next N lines

N characters

1

10
YYWYYWWWWW
YWWWYWWWWW
YYWYYWWWWW

WWWWIWWWWWW

K 0K P~ N

WYWW

WWYYY

Text Description

Regular Expression

three letter word starting with *X’

\bX[A-Za-z]{2}\b

Looking Forward: Context

Challenges

Understanding how
sentence meaning varies
with context

- Data
- Linguistics: co-ref,
ellipsis, etc.

Miller et al. 1996;
Zettlemoyer and Collins

2009; Artzi and
Zettlemoyer 2013

Example #1:
(a) show me the flights from boston to philly
Ax. flight(x) N\ from(x,bos) A to(x, phi)
(b) show me the ones that leave in the morning
Ax. flight(x) A from(x,bos) A to(x, phi)
A during(x, morning)
(c) what kind of plane is used on these flights
Ay.3x. flight(x) A\ from(x,bos) A to(x, phi)
A during(x, morning) A aircraft(z) =y

Example #2:
(a) show me flights from milwaukee to orlando
Ax. flight(x) A from(x, mil) A to(x, orl)
(b) cheapest
argmin(Ax. flight(x) A from(x, mil) A to(x, orl),
\y. fare(y))
(c) departing wednesday after 5 o’clock
argmin(Ax. flight(x) A from(x, mil) A to(x, orl)
A day(z, wed) A depart(x) > 1700,
Ay.fare(y))

Looking Forward: Sensors

-Q_ o ‘ 9

Goal Integrate semantic parsing PN ®

with rich sensing on real 9
FEARIR

robots s J)]

Move the pallet from the truck.

Challenges EEEEDELv

- Managi ng uncertainty Remove the pallet from the back of the truck.

Offload the metal crate from the truck.

- Interactive learning

Matuszek et al. 2012; Tellex
et al. 201 3; Krishnamurthy
and Kollar 2013

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf

Semantic Flexible High-Order Learning
Parser Logic Representation Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 201 3a]

http://yoavartzi.com/spf

[fin]

Supplementary Material

Function Composition

References

Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping semantic parsers from
conversations. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. (2013a). UW SPF: The University of Washington
Semantic Parsing Framework.

Artzi, Y. and Zettlemoyer, L. (2013b). Weakly supervised learning of semantic
parsers for mapping instructions to actions. Transactions of the Association
for Computational Linguistics, 1(1):49-62.

Branavan, S., Chen, H., Zettlemoyer, L., and Barzilay, R. (2009). Reinforce-
ment learning for mapping instructions to actions. In Proceedings of the Joint
Conference of the Association for Computational Linguistics and the Inter-
national Joint Conference on Natural Language Processing.

Branavan, S., Zettlemoyer, L., and Barzilay, R. (2010). Reading between the
lines: learning to map high-level instructions to commands. In Proceedings of
the Conference of the Association for Computational Linguistics.

Cai, Q. and Yates, A. (2013a). Large-scale semantic parsing via schema match-
ing and lexicon extension. In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics.

Cai, Q. and Yates, A. (2013b). Semantic parsing freebase: Towards open-domain
semantic parsing. In Joint Conference on Lezical and Computational Seman-
tics: Proceedings of the Main Conference and the Shared Task: Semantic
Teztual Similarity.

Carpenter, B. (1997). Type-Logical Semantics. The MIT Press.

Chen, D. and Mooney, R. (2011). Learning to interpret natural language naviga-
tion instructions from observations. In Proceedings of the National Conference
on Artificial Intelligence.

Church, A. (1932). A set of postulates for the foundation of logic. The Annals
of Mathematics, 33:346—-366.

Church, A. (1940). A formulation of the simple theory of types. The journal of
symbolic logic, 5:56—68.

Clark, S. and Curran, J. (2007). Wide-coverage efficient statistical parsing with
CCG and log-linear models. Computational Linguistics, 33(4):493-552.

Clarke, J., Goldwasser, D., Chang, M., and Roth, D. (2010). Driving seman-
tic parsing from the world’s response. In Proceedings of the Conference on
Computational Natural Language Learning.

Collins, M. (2002). Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D.,
Pao, C., Rudnicky, A., and Shriberg, E. (1994). Expanding the scope of the
ATIS task: The ATIS-3 corpus. In Proceedings of the workshop on Human
Language Technology.

Davidson, D. (1967). The logical form of action sentences. Essays on actions
and events, pages 105—-148.

Davidson, D. (1969). The individuation of events. In Essays in honor of Carl
G. Hempel, pages 216-234. Springer.

Granroth-Wilding, M. and Steedman, M. (2012). Statistical parsing for har-
monic analysis of jazz chord sequences. Ann Arbor, MI: MPublishing, Uni-
versity of Michigan Library.

Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly
context-sensitive grammar formalisms. Technical report.

Kim, J. and Mooney, R. J. (2012). Unsupervised pcfg induction for grounded
language learning with highly ambiguous supervision. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

Krishnamurthy, J. and Kollar, T. (2013). Jointly learning to parse and per-
ceive: Connecting natural language to the physical world. Transactions of
the Association for Computational Linguistics, 1(1):193-206.

Kushman, N. and Barzilay, R. (2013). Using semantic unification to generate
regular expressions from natural language. In Proceedings of the Human Lan-
guage Technology Conference of the North American Association for Compu-
tational Linguistics.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010).
Inducing probabilistic CCG grammars from logical form with higher-order
unification. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2011).
Lexical Generalization in CCG Grammar Induction for Semantic Parsing.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing.

Lei, T., Long, F., Barzilay, R., and Rinard, M. (2013). From natural language
specifications to program input parsers. In Proceedings of the the annual
meeting of the Association for Computational Linguistics.

Liang, P., Bouchard-C6té, A., Klein, D., and Taskar, B. (2006). An end-to-
end discriminative approach to machine translation. In Proceedings of the
Conference of the Association of Computational Linguistics.

Liang, P., Jordan, M., and Klein, D. (2011). Learning dependency-based com-
positional semantics. In Proceedings of the Conference of the Association for
Computational Linguistics.

Maienborn, C., Von Heusinger, K., and Portner, P. (2011). Semantics: An
international handbook of natural language and meaning. Walter de Gruyter.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and Fox, D. (2012a).
A joint model of language and perception for grounded attribute learning.
Proceedings of the International Conference on Machine Learning.

Matuszek, C., Herbst, E., Zettlemoyer, L. S., and Fox, D. (2012b). Learning to
parse natural language commands to a robot control system. In Proceedings
of the International Symposium on FExperimental Robotics.

Miller, S., Bobrow, R., Ingria, R., and Schwartz, R. (1994). Hidden under-
standing models of natural language. In Proceedings of the Conference of the
Association of Computational Linguistics.

Parsons, T. (1990). Events in the Semantics of English. The MIT Press.

Scontras, G., Graff, P., and Goodman, N. D. (2012). Comparing pluralities.
Cognition, 123(1):190-197.

Singh-Miller, N. and Collins, M. (2007). Trigger-based language modeling using
a loss-sensitive perceptron algorithm. In IEFEE International Conference on
Acoustics, Speech and Signal Processing.

Steedman, M. (1996). Surface Structure and Interpretation. The MIT Press.
Steedman, M. (2000). The Syntactic Process. The MIT Press.
Steedman, M. (2011). Taking Scope. The MIT Press.

Tang, L. R. and Mooney, R. J. (2001). Using multiple clause constructors
in inductive logic programming for semantic parsing. In Proceedings of the
European Conference on Machine Learning.

Tellex, S., Kollar, T., Dickerson, S., Walter, M., Banerjee, A., Teller, S., and
Roy, N. (2011). Understanding natural language commands for robotic nav-
igation and mobile manipulation. In Proceedings of the National Conference
on Artificial Intelligence.

Tellex, S., Thaker, P., Joseph, J., and Roy, N. (2013). Learning perceptually
grounded word meanings from unaligned parallel data. Machine Learning,
pages 1-17.

Wong, Y. and Mooney, R. (2006). Learning for semantic parsing with statisti-
cal machine translation. In Proceedings of the Human Language Technology
Conference of the North American Association for Computational Linguistics.

Zelle, J. and Mooney, R. (1996). Learning to parse database queries using
inductive logic programming. In Proceedings of the National Conference on
Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2005). Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2007). Ounline learning of relaxed CCG gram-
mars for parsing to logical form. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning.

Zettlemoyer, L. and Collins, M. (2009). Learning context-dependent mappings
from sentences to logical form. In Proceedings of the Joint Conference of the
Association for Computational Linguistics and International Joint Confer-
ence on Natural Language Processing.

