Semantic Parsing with Combinatory Categorial Grammars

Yoav Artzi, Nicholas FitzGerald and Luke Zettlemoyer University of Washington

ACL 2013 Tutorial Sofia, Bulgaria

Website <u>http://yoavartzi.com/tutorial</u>

More informative

Information Extraction

Recover information about pre-specified relations and entities

Example Task

Relation Extraction

More informative

Broad-coverage Semantics

> Focus on specific phenomena (e.g., verbargument matching)

Example Task

Summarization

Obama wins election. Big party in Chicago. Romney a bit down, asks for some tea.

More informative

- Convert to database query to get the answer
- Allow a robot to do planning

at the chair, move forward three steps past the sofa $\lambda a.pre(a, \iota x.chair(x)) \land move(a) \land len(a, 3) \land$ $dir(a, forward) \land past(a, \iota y.sofa(y))$

at the chair, move forward three steps past the sofa $\lambda a.pre(a, \iota x.chair(x)) \land move(a) \land len(a, 3) \land$ $dir(a, forward) \land past(a, \iota y.sofa(y))$

$f: \text{sentence} \to \text{logical form}$

$f: \text{sentence} \to \text{logical form}$

Central Problems

Parsing Choices

- Grammar formalism
- Inference procedure

Inductive Logic Programming [Zelle and Mooney 1996] SCFG [Wong and Mooney 2006] CCG + CKY [Zettlemoyer and Collins 2005] Constrained Optimization + ILP [Clarke et al. 2010] DCS + Projective dependency parsing [Liang et al. 2011]

Learning

- What kind of supervision is available?
- Mostly using latent variable methods

Annotated parse trees [Miller et al. 1994] Sentence-LF pairs [Zettlemoyer and Collins 2005] Question-answer pairs [Clarke et al. 2010] Instruction-demonstration pairs [Chen and Mooney 2011] Conversation logs [Artzi and Zettlemoyer 2011] Visual sensors [Matuszek et al. 2012a]

Semantic Modeling

- What logical language to use?
- How to model meaning?

Variable free logic [Zelle and Mooney 1996;Wong and Mooney 2006] High-order logic [Zettlemoyer and Collins 2005] Relational algebra [Liang et al. 2011] Graphical models [Tellex et al. 2011]

Today

Parsing	Combinatory Categorial Grammars
Learning	Unified learning algorithm
Modeling	Best practices for semantics design

Parsing

Learning

Modeling

- Structured perceptron
- A unified learning algorithm
- Supervised learning
- Weak supervision

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf

Semantic Parser Flexible High-Order Logic Representation Learning Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 2013a]

Lambda Calculus

- Formal system to express computation
- Allows high-order functions

$$\begin{split} \lambda a.move(a) \wedge dir(a, LEFT) \wedge to(a, \iota y.chair(y)) \wedge \\ pass(a, \mathcal{A}y.sofa(y) \wedge intersect(\mathcal{A}z.intersection(z), y)) \end{split}$$

Lambda Calculus Base Cases

- Logical constant
- Variable
- Literal
- Lambda term

Lambda Calculus Logical Constants

• Represent objects in the world

 $NYC, CA, RAINIER, LEFT, \dots$ located_in, depart_date, ...

Lambda Calculus Variables

- Abstract over objects in the world
- Exact value not pre-determined

$$x, y, z, \ldots$$

Lambda Calculus Literals

• Represent function application

city(AUSTIN) $located_in(AUSTIN, TEXAS)$

Lambda Calculus Literals

• Represent function application

Logical expression List of logical expressions

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

$$\lambda x.city(x)$$

 $\lambda x.\lambda y.located_in(x,y)$

Lambda Calculus Lambda Terms

- Bind/scope a variable
- Repeat to bind multiple variables

Lambda Calculus Quantifiers?

- Higher order constants
- No need for any special mechanics
- Can represent all of first order logic

 $\begin{aligned} &\forall (\lambda x.big(x) \land apple(x)) \\ &\neg (\exists (\lambda x.lovely(x))) \\ &\iota(\lambda x.beautiful(x) \land grammar(x)) \end{aligned}$

Lambda Calculus Syntactic Sugar

 $\wedge (A, \wedge (B, C)) \Leftrightarrow A \wedge B \wedge C$ $\vee (A, \vee (B, C)) \Leftrightarrow A \vee B \vee C$ $\neg (A) \Leftrightarrow \neg A$ $\mathcal{Q}(\lambda x.f(x)) \Leftrightarrow \mathcal{Q}x.f(x)$ $\text{ for } \mathcal{Q} \in \{\iota, \mathcal{A}, \exists, \forall\}$ $\lambda x.flight(x) \wedge to(x, move)$ $\lambda x.flight(x) \wedge to(x, NYC)$ $\lambda x.NYC(x) \wedge x(to, move)$

$\lambda x.flight(x) \land to(x, move)$ $\lambda x.flight(x) \land to(x, NYC)$ $\lambda x.NYC(x) \land x(to, move)$

Simply Typed Lambda Calculus

- Like lambda calculus
- But, typed

$\lambda x.flight(x) \land to(x, move)$ $\lambda x.flight(x) \land to(x, NYC)$ $\lambda x.NYC(x) \land x(to, move)$

Lambda Calculus Typing

• Simple types

Truthvalue C Entity

• Complex types

< e, t >

<< e, t >, e >
Lambda Calculus Typing

• Simple types Truthvalue • Complex types < e, t >Entity • Simple types • Complex types < e, t > < e, t >, e >Domain Range

Simply Typed Lambda Calculus

$$\begin{split} \lambda a.move(a) \wedge dir(a, LEFT) \wedge to(a, \iota y.chair(y)) \wedge \\ pass(a, \mathcal{A}y.sofa(y) \wedge intersect(\mathcal{A}z.intersection(z), y)) \end{split}$$

Type information usually omitted

	State				Border			Mountains	
	Abbr.	Capital	Pop.		Statel	State2		Name	State
	AL Montgomery	2.0		WA	OR		Bianca	CO	
		Montgomery	3.9		WA	ID		Antero	CO CO WA
	AK	Juneau	0.4		CA	OR		Rainier	WA
	. —				CA	NV		Shasta	
	AZ	Phoenix	2.7		CA	AZ		JIIASLA	

Show me mountains in states bordering Texas

[Zettlemoyer and Collins 2005]

System	how can I help you ?
User	i ' d like to fly to new york
System	flying to new york . leaving what city ?
User	from boston on june seven with american airlines
System	flying to new york . what date would you like to depart boston ?
User	june seventh
System	do you have a preferred airline ?
User	american airlines
System	o . k . leaving boston to new york on june seventh flying with american airlines . where would you like to go to next ?
User	back to boston on june tenth

[CONVERSATION CONTINUES]

go to the chair and turn right

- Flexible representation
- Can capture full complexity of natural language

More on modeling meaning later

Constructing Lambda Calculus Expressions

at the chair, move forward three steps past the sofa

?

 $\lambda a.pre(a, \iota x.chair(x)) \land move(a) \land len(a, 3) \land dir(a, forward) \land past(a, \iota y.sofa(y))$

Combinatory Categorial Grammars

[Steedman 1996, 2000]

Combinatory Categorial Grammars

- Categorial formalism
- Transparent interface between syntax and semantics
- Designed with computation in mind
- Part of a class of mildly context sensitive formalisms (e.g., TAG, HG, LIG) [Joshi et al. 1990]

CCG Categories $ADJ: \lambda x.fun(x)$

- Basic building block
- Capture syntactic and semantic information jointly

CCG Categories
Syntax
$$ADJ: \lambda x.fun(x)$$
 Semantics

- Basic building block
- Capture syntactic and semantic information jointly

- Primitive symbols: N, S, NP, ADJ and PP
- Syntactic combination operator (/,\)
- Slashes specify argument order and direction

CCG Categories $ADJ : \lambda x.fun(x) \text{ Semantics}$ $(S \setminus NP) / ADJ : \lambda f. \lambda x. f(x)$

NP:CCG

- λ -calculus expression
- Syntactic type maps to semantic type

$\begin{array}{l} & \mathsf{CCG} \ \mathsf{Lexical} \ \mathsf{Entries} \\ & \mathrm{fun} \ \vdash ADJ : \lambda x.fun(x) \end{array}$

- Pair words and phrases with meaning
- Meaning captured by a CCG category

- Pair words and phrases with meaning
- Meaning captured by a CCG category

CCG Lexicons

fun $\vdash ADJ : \lambda x.fun(x)$ is $\vdash (S \setminus NP) / ADJ : \lambda f. \lambda x.f(x)$ CCG $\vdash NP : CCG$

- Pair words and phrases with meaning
- Meaning captured by a CCG category

Between CCGs and CFGs							
	CFGs	CCGs					
Combination operations	Many	Few					
Parse tree nodes	Non-terminals	Categories					
Syntactic symbols	Few dozen	Handful, but can combine					
Paired with words	POS tags	Categories					

Use lexicon to match words and phrases with their categories

CCG Operations

- Small set of operators
 - Input: I-2 CCG categories
 - Output: A single CCG category
- Operate on syntax semantics together
- Mirror natural logic operations

CCG Operations Application

$$B:g \quad A \backslash B: f \Rightarrow A: f(g) \quad (<)$$
$$A/B:f \quad B:g \Rightarrow A: f(g) \quad (>)$$

- Equivalent to function application
- Two directions: forward and backward
 - Determined by slash direction

CCG Operations Application

- Equivalent to function application
- Two directions: forward and backward
 - Determined by slash direction

Use lexicon to match words and phrases with their categories

Parsing with CCGsCCGisfun \overrightarrow{NP} $\overline{S \setminus NP / ADJ}$ \overline{ADJ} CCG $\lambda f. \lambda x. f(x)$ $\lambda x. fun(x)$ $\overrightarrow{S \setminus NP}$ $\lambda x. fun(x)$

Combine categories using operators $A/B: f \quad B: g \Rightarrow A: f(g) \quad (>)$

Parsing with CCGsCCGisfun

Combine categories using operators $B:g \quad A \backslash B: f \Rightarrow A: f(g) \quad (<)$

Composed adjectives

square blue or round yellow pillow

CCG Operations Composition

$$A/B: f \quad B/C: g \Rightarrow A/C: \lambda x.f(g(x)) \quad (>B)$$
$$B\backslash C: g \quad A\backslash B: f \Rightarrow A\backslash C: \lambda x.f(g(x)) \quad ($$

- Equivalent to function composition*
- Two directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations Composition

- Equivalent to function composition*
- Two directions: forward and backward

* Formal definition of logical composition in supplementary slides

CCG Operations Type Shifting

- $\begin{aligned} ADJ : \lambda x.g(x) \Rightarrow N/N : \lambda f.\lambda x.f(x) \wedge g(x) \\ PP : \lambda x.g(x) \Rightarrow N \setminus N : \lambda f.\lambda x.f(x) \wedge g(x) \\ AP : \lambda e.g(e) \Rightarrow S \setminus S : \lambda f.\lambda e.f(e) \wedge g(e) \\ AP : \lambda e.g(e) \Rightarrow S/S : \lambda f.\lambda e.f(e) \wedge g(e) \end{aligned}$
- Category-specific unary operations
- Modify category type to take an argument
- Helps in keeping a compact lexicon

CCG Operations Type Shifting

- Category-specific unary operations
- Modify category type to take an argument
- Helps in keeping a compact lexicon

- Category-specific unary operations
- Modify category type to take an argument
- Helps in keeping a compact lexicon

CCG Operations Coordination

and $\vdash C : conj$ or $\vdash C : disj$

- Coordination is special cased
 - Specific rules perform coordination
 - Coordinating operators are marked with special lexical entries

square	blue	or	round	yellow	pillow
--------	------	----	-------	--------	--------

square	blue	blue or rou		yellow	pillow	
$\frac{ADJ}{\lambda x.square(x)}$	$\frac{ADJ}{\lambda x.blue(x)}$	$ \overline{C}$ $ disj$	$\begin{array}{c} ADJ\\ \lambda x.round(x) \end{array}$	$\frac{ADJ}{\lambda x.yellow(x)}$	$\frac{1}{\lambda x.pillow(x)}$	

Use lexicon to match words and phrases with their categories

square	blue	or	round	yellow	pillow
$\begin{array}{c} ADJ\\ \lambda x.square(x) \end{array}$	$\frac{ADJ}{\lambda x.blue(x)}$	$ \overline{C}$ $ disj$	$\begin{array}{c} ADJ\\ \lambda x.round(x) \end{array}$	$\frac{ADJ}{\lambda x.yellow(x)}$	$\frac{1}{\lambda x.pillow(x)}$
$\frac{N/N}{\lambda f.\lambda x.f(x) \wedge square(x)}$					

Shift adjectives to combine

 $ADJ: \lambda x.g(x) \Rightarrow N/N: \lambda f.\lambda x.f(x) \land g(x)$

Shift adjectives to combine

 $ADJ: \lambda x.g(x) \Rightarrow N/N: \lambda f.\lambda x.f(x) \land g(x)$

Compose pairs of adjectives $A/B: f \quad B/C: g \Rightarrow A/C: \lambda x.f(g(x)) \quad (>B)$

Coordinate composed adjectives

Apply coordinated adjectives to noun $A/B: f \quad B: g \Rightarrow A: f(g) \quad (>)$

Weighted Linear CCGs

- Given a weighted linear model:
 - CCG lexicon Λ
 - Feature function $f: X \times Y \to \mathbb{R}^m$
 - Weights $w \in \mathbb{R}^m$
- The best parse is:

$$y^* = rg\max w \cdot f(x, y)$$

• We consider all possible parses y for sentence x given the lexicon A

Parsing Algorithms

- Syntax-only CCG parsing has polynomial time CKY-style algorithms
- Parsing with semantics requires entire category as chart signature
 - e.g., $ADJ: \lambda x.fun(x)$
- In practice, prune to top-N for each span
 - Approximate, but polynomial time

More on CCGs

- Generalized type-raising operations
- Cross composition operations for cross serial dependencies
- Compositional approaches to English intonation
- and a lot more ... even Jazz

The Lexicon Problem

- Key component of CCG
- Same words often paired with many different categories
- Difficult to learn with limited data

the house dog

the dog of the house

 $\iota x.dog(x) \wedge of(x, \iota y.house(y))$

the garden dog

 $\iota x.dog(x) \wedge of(x, \iota y.garden(y))$

- Lexical entries share information
- Decomposition of entries can lead to more compact lexicons

the house doghouse $\vdash ADJ : \lambda x.of(x, \iota y.house(y))$ the dog of the househouse $\vdash N : \lambda x.house(x)$ $\iota x.dog(x) \land of(x, \iota y.house(y))$ the garden doggarden $\vdash ADJ : \lambda x.of(x, \iota y.garden(y))$ $\iota x.dog(x) \land of(x, \iota y.garden(y))$

- Lexical entries share information
- Decomposition of entries can lead to more compact lexicons

the house doghouse $\vdash ADJ : \lambda x.of(x, \iota y.house(y))$ the dog of the househouse $\vdash N : \lambda x.house(x)$ $\iota x.dog(x) \land of(x, \iota y.house(y))$ the garden doggarden $\vdash ADJ : \lambda x.of(x, \iota y.garden(y))$ $\iota x.dog(x) \land of(x, \iota y.garden(y))$

- Lexical entries share information
- Decomposition of entries can lead to more compact lexicons

the house doghouse $\vdash ADJ : \lambda x.of(x, \iota y.house(y))$ the dog of the househouse $\vdash N : \lambda x.house(x)$ $\iota x.dog(x) \land of(x, \iota y.house(y))$ the garden doggarden $\vdash ADJ : \lambda x.of(x, \iota y.garden(y))$ $\iota x.dog(x) \land of(x, \iota y.garden(y))$

- Lexical entries share information
- Decomposition of entries can lead to more compact lexicons

house $\vdash ADJ : \lambda x.of(x, \iota y.house(y))$

house $\vdash N : \lambda x.house(x)$

garden $\vdash ADJ : \lambda x.of(x, \iota y.garden(y))$

```
Lexemes

(garden, \{garden\})
(house, \{house\})
Templates

\lambda(\omega, \{v_i\}_1^n).
[\omega \vdash ADJ : \lambda x.of(x, \iota y.v_1(y))]
\lambda(\omega, \{v_i\}_1^n).
[\omega \vdash N : \lambda x.v_1(x)]
```

Templates

 $\lambda(\omega, \{v_i\}_1^n).$ $[\omega \vdash ADJ : \lambda x.of(x, \iota y.v_1(y))]$ $\lambda(\omega, \{v_i\}_1^n).$ $[\omega \vdash N : \lambda x.v_1(x)]$

Lexemes

```
(garden, \{garden\})
(house, \{house\})
```

- Capture systematic variations in word usage
- Each variation can then be applied to compact units of lexical meaning

- Model word meaning
- Abstracts the compositional nature of the word

garden $\vdash N : \lambda x.garden(x)$

	flight $\vdash S NP: \lambda x.flight(x)$
	flight $\vdash S NP/(S NP) : \lambda f.\lambda x.flight(x) \land f(x)$
Original	flight $\vdash S NP \setminus (S NP) : \lambda f.\lambda x.flight(x) \land f(x)$
Lexicon	ground transport $\vdash S NP : \lambda x.trans(x)$
	ground transport $\vdash S NP/(S NP) : \lambda f.\lambda x.trans(x) \land f(x)$
	ground transport $\vdash S NP \setminus (S NP) : \lambda f.\lambda x.trans(x) \land f(x)$

Factored Lexicon	$(\text{flight}, \{flight\})$ (ground transport, $\{trans\}$)
	$\begin{split} \lambda(\omega, \{v_i\}_1^n).[\omega \vdash S NP : \lambda x.v_1(x)] \\ \lambda(\omega, \{v_i\}_1^n).[\omega \vdash S NP/(S NP) : \lambda f.\lambda x.v_1(x) \land f(x)] \\ \lambda(\omega, \{v_i\}_1^n).[\omega \vdash S NP \backslash (S NP) : \lambda f.\lambda x.v_1(x) \land f(x)] \end{split}$

Factoring a Lexical Entry

house $\vdash ADJ : \lambda x.of(x, \iota y.house(y))$

Partial factoring

(house, {house}) $\lambda(\omega, \{v_i\}_1^n) [\omega \vdash ADJ : \lambda x.of(x, \iota y.v_1(y))]$

Partial factoring

(house, $\{of\}$) $\lambda(\omega, \{v_i\}_1^n).[\omega \vdash ADJ : \lambda x.v_1(x, \iota y.house(y))]$

Maximal factoring

(house, {of, house}) $\lambda(\omega, \{v_i\}_1^n).[\omega \vdash ADJ : \lambda x.v_1(x, \iota y.v_2(y))]$

- What kind of data/supervision we can use?
- What do we need to learn?

Parsing as Structure Prediction

Learning CCG

Lexicon

Combinators

Learning CCG

Learning CCG

Combinators

Predefined

 ${\mathcal U}$

Supervised Data

Supervised Data

Supervised Data

Supervised learning is done from pairs of sentences and logical forms

Show me flights to Boston $\lambda x.flight(x) \wedge to(x, BOSTON)$

I need a flight from baltimore to seattle $\lambda x.flight(x) \wedge from(x, BALTIMORE) \wedge to(x, SEATTLE)$

what ground transportation is available in san francisco $\lambda x.ground_transport(x) \land to_city(x, SF)$

[Zettlemoyer and Collins 2005; 2007]

Weak Supervision

- Logical form is latent
- "Labeling" requires less expertise
- Labels don't uniquely determine correct logical forms
- Learning requires executing logical forms within a system and evaluating the result

What is the largest state that borders Texas? $New\ Mexico$

[Clarke et al. 2010; Liang et al. 2011]

What is the largest state that borders Texas? $New\ Mexico$

```
argmax(\lambda x.state(x) \\ \wedge border(x, TX), \lambda y.size(y))
```

 $\begin{aligned} argmax(\lambda x.river(x) \\ \wedge in(x,TX), \lambda y.size(y)) \end{aligned}$

What is the largest state that borders Texas? $New\ Mexico$

What is the largest state that borders Texas? $New\ Mexico$

Weak Supervision Learning from Demonstrations

at the chair, move forward three steps past the sofa

[Chen and Mooney 2011; Kim and Mooney 2012; Artzi and Zettlemoyer 2013b]

Weak Supervision Learning from Demonstrations

at the chair, move forward three steps past the sofa

Some examples from other domains:

- Sentences and labeled game states [Goldwasser and Roth 2011]
- Sentences and sets of physical objects [Matuszek et al. 2012]

[Chen and Mooney 2011; Kim and Mooney 2012; Artzi and Zettlemoyer 2013b]

Weak Supervision Learning from Conversation Logs

SYSTEM how can I help you ? (OPEN_TASK)

USER i'd like to fly to new york

SYSTEM flying to new york . (CONFIRM: from(fl, ATL)) leaving what city ? (ASK: $\lambda x.from(fl, x)$)

USER from boston on june seven with american airlines

SYSTEM flying to new york . (CONFIRM: to(fl, NYC)) what date would you like to depart boston ? (ASK: $\lambda x.date(fl,x) \wedge to(fl, BOS)$)

USER june seventh

[CONVERSATION CONTINUES]

- Structured perceptron
- A unified learning algorithm
- Supervised learning
- Weak supervision
Structured Perceptron

- Simple additive updates
 - Only requires efficient decoding (argmax)
 - Closely related to MaxEnt and other feature rich models
 - Provably finds linear separator in finite updates, if one exists
- Challenge: learning with hidden variables

Structured Perceptron

Data: $\{(x_i, y_i) : i = 1 \dots n\}$ [iterate epochs] For t = 1 ... T: [iterate examples] For i = 1 ... n: $y^* \leftarrow \arg \max_{y} \langle \theta, \Phi(x_i, y) \rangle$ [predict] If $y^* \neq y_i$: [check] $\theta \leftarrow \theta + \Phi(x_i, y_i) - \Phi(x_i, y^*)$ [update]

[Collins 2002]

One Derivation of the Perceptron

Log-linear model:
$$p(y|x) = \frac{e^{w \cdot f(x,y)}}{\sum_{y'} e^{w \cdot f(x,y')}}$$

Step I: Differentiate, to maximize data log-likelihood

$$update = \sum_{i} f(x_i, y_i) - E_{p(y|x_i)} f(x_i, y)$$

Step 2: Use online, stochastic gradient updates, for example *i*:

$$update_i = f(x_i, y_i) - E_{p(y|x_i)}f(x_i, y)$$

Step 3: Replace expectations with maxes (Viterbi approx.)

$$update_i = f(x_i, y_i) - f(x_i, y^*)$$
 where $y^* = \arg\max_y w \cdot f(x_i, y)$

The Perceptron with Hidden Variables

Log-linear model: $p(y|x) = \sum_{h} p(y,h|x)$ $p(y,h|x) = \frac{e^{w \cdot f(x,h,y)}}{\sum_{y',h'} e^{w \cdot f(x,h',y')}}$

Step I: Differentiate marginal, to maximize data log-likelihood

$$update = \sum_{i} E_{p(h|y_i, x_i)}[f(x_i, h, y_i)] - E_{p(y, h|x_i)}[f(x_i, h, y)]$$

Step 2: Use online, stochastic gradient updates, for example *i*:

$$update_i = E_{p(y_i,h|x_i)}[f(x_i,h,y_i)] - E_{p(y,h|x_i)}[f(x_i,h,y)]$$

Step 3: Replace expectations with maxes (Viterbi approx.)

$$update_{i} = f(x_{i}, h', y_{i}) - f(x_{i}, h^{*}, y^{*})$$
 where

$$y^*, h^* = \arg \max_{y,h} w \cdot f(x_i, h, y)$$
 and $h' = \arg \max_h w \cdot f(x_i, h, y_i)$

Hidden Variable Perceptron

Data: $\{(x_i, y_i) : i = 1 \dots n\}$

For $t = 1 \dots T$: [iterate epochs]

For
$$i = 1 \dots n$$
: [iterate examples]
 $y^*, h^* \leftarrow \arg \max_{y,h} \langle \theta, \Phi(x_i, h, y) \rangle$ [predict]
If $y^* \neq y_i$: [check]
 $h' \leftarrow \arg \max_h \langle \theta, \Phi(x_i, h, y_i)$ [predict hidden]
 $\theta \leftarrow \theta + \Phi(x_i, h', y_i) - \Phi(x_i, h^*, y^*)$ [update]

[Liang et al. 2006; Zettlemoyer and Collins 2007]

Hidden Variable Perceptron

- No known convergence guarantees
 - Log-linear version is non-convex
- Simple and easy to implement
 - Works well with careful initialization
- Modifications for semantic parsing
 - Lots of different hidden information
 - Can add a margin constraint, do probabilistic version, etc.

Unified Learning Algorithm

- Handle various learning signals
- Estimate parsing parameters
- Induce lexicon structure
- Related to loss-sensitive structured perceptron [Singh-Miller and Collins 2007]

Learning Choices

Validation Function

 $\mathcal{V}:\mathcal{Y}\to\{t,f\}$

- Indicates correctness of a parse y
- \bullet Varying ${\cal V}$ allows for differing forms of supervision

Lexical Generation Procedure

$GENLEX(x, \mathcal{V}; \Lambda, \theta)$

- Given: sentence x validation function \mathcal{V} lexicon Λ parameters θ
- Produce a overly general set of lexical entries

Unified Learning Algorithm

- Initialize θ using $\Lambda_0\;$, $\Lambda \leftarrow \Lambda_0$
- For t = 1 ... T, i = 1 ... n:
 - Step 1: (Lexical generation)
 Step 2: (Update parameters)
- **Output:** Parameters θ and lexicon Λ

- Online
- Input:
 - $\{(x_i, \mathcal{V}_i) : i = 1 \dots n\}$
- 2 steps:
 - Lexical generation
 - Parameter update

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Initialize parameters and lexicon

 θ weights Λ_0 initial lexicon

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Iterate over data

- T # iterations
- n # samples

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

a. Set
$$\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$$
,
 $\lambda \leftarrow \Lambda \cup \lambda_G$

- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

- a. Set $\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta),$ $\lambda \leftarrow \Lambda \cup \lambda_G$
- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Generate a large set of potential lexical entries

 θ weights

 x_i sentence

 \mathcal{V}_i validation function

 $GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$

lexical generation function

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

- a. Set $\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta),$ $\lambda \leftarrow \Lambda \cup \lambda_G$
- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

 $\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Generate a large set of potential lexical entries

 θ weights

 x_i sentence

 \mathcal{V}_i validation function

 $GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$

lexical generation function

Procedure to propose potential new lexical entries for a sentence

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

- a. Set $\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta),$ $\lambda \leftarrow \Lambda \cup \lambda_G$
- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Generate a large set of potential lexical entries

 θ weights

 x_i sentence

 \mathcal{V}_i validation function

 $GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$

lexical generation function

$$\mathcal{V}:\mathcal{Y} o \{t,f\}$$
 y all parses

For t = 1 ... T, i = 1 ... n:

- Step 1: (Lexical generation)
 - a. Set $\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta),$ $\lambda \leftarrow \Lambda \cup \lambda_G$
 - b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
 - c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Get top parses

- x_i sentence
- k beam size

 $GEN(x_i; \lambda)$ set of all parses

For t = 1 ... T, i = 1 ... n:

- Step 1: (Lexical generation)
 - a. Set $\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$, $\lambda \leftarrow \Lambda \cup \lambda_G$
 - b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
 - c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Get lexical entries from highest scoring valid parses

 $\begin{aligned} \theta \text{ weights} \\ \mathcal{V} \text{ validation function} \\ LEX(y) \text{ set of lexical entries} \\ \phi_i(y) &= \phi(x_i, y) \\ MAXV_i(Y; \theta) &= \{y | y \in Y \land \mathcal{V}_i(y) \land \\ \forall y' \in Y.\mathcal{V}_i(y) \implies \\ \langle \theta, \Phi_i(y') \rangle &\leq \langle \theta, \Phi_i(y) \rangle \} \end{aligned}$

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

a. Set
$$\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$$
,
 $\lambda \leftarrow \Lambda \cup \lambda_G$

- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Update model's lexicon

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

Step 2: (Update parameters)

- a. Set $G_i \leftarrow MAXV_i(GEN(x_i; \Lambda); \theta)$ and $B_i \leftarrow \{e | e \in GEN(x_i; \Lambda) \land \neg \mathcal{V}_i(y)\}$
- b. Construct sets of margin violating good and bad parses:

$$R_{i} \leftarrow \{g | g \in G_{i} \land \exists b \in B_{i} \\ s.t. \langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \} \\ E_{i} \leftarrow \{b | b \in B_{i} \land \exists g \in G_{i} \\ s.t. \langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \}$$

c. Apply the additive update:

 $\theta \leftarrow \theta + \frac{1}{|R_i|} \sum_{r \in R_i} \Phi_i(r) \\ - \frac{1}{|E_i|} \sum_{e \in E_i} \Phi_i(e)$

Output: Parameters θ and lexicon Λ

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

Step 2: (Update parameters)

- a. Set $G_i \leftarrow MAXV_i(GEN(x_i; \Lambda); \theta)$ and $B_i \leftarrow \{e | e \in GEN(x_i; \Lambda) \land \neg \mathcal{V}_i(y)\}$
- b. Construct sets of margin violating good and bad parses:

$$R_{i} \leftarrow \{g | g \in G_{i} \land \exists b \in B_{i}$$

s.t. $\langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \}$
 $E_{i} \leftarrow \{b | b \in B_{i} \land \exists g \in G_{i}$
s.t. $\langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \}$

c. Apply the additive update:

 $\theta \leftarrow \theta + \frac{1}{|R_i|} \sum_{r \in R_i} \Phi_i(r) \\ - \frac{1}{|E_i|} \sum_{e \in E_i} \Phi_i(e)$

Output: Parameters θ and lexicon Λ

Re-parse and group all parses into 'good' and 'bad' sets

 $\theta \text{ weights}$ $x_i \text{ sentence}$ $\mathcal{V}_i \text{ validation function}$ $GEN(x_i; \lambda) \text{ set of all parses}$ $\phi_i(y) = \phi(x_i, y)$ $MAXV_i(Y; \theta) = \{y | y \in Y \land \mathcal{V}_i(y) \land$ $\forall y' \in Y.\mathcal{V}_i(y) \Longrightarrow$ $\langle \theta, \Phi_i(y') \rangle \leq \langle \theta, \Phi_i(y) \rangle \}$

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

Step 2: (Update parameters)

- a. Set $G_i \leftarrow MAXV_i(GEN(x_i; \Lambda); \theta)$ and $B_i \leftarrow \{e | e \in GEN(x_i; \Lambda) \land \neg \mathcal{V}_i(y)\}$
- b. Construct sets of margin violating good and bad parses: $R_i \leftarrow \{g | g \in G_i \land \exists b \in B_i \\ s.t. \langle \theta, \Phi_i(g) - \Phi_i(b) \rangle < \gamma \Delta_i(g, b) \}$ $E_i \leftarrow \{b | b \in B_i \land \exists g \in G_i \\ s.t. \langle \theta, \Phi_i(g) - \Phi_i(b) \rangle < \gamma \Delta_i(g, b) \}$
- c. Apply the additive update: $\theta \leftarrow \theta + \frac{1}{|R_i|} \sum_{r \in R_i} \Phi_i(r)$ $-\frac{1}{|E_i|} \sum_{e \in E_i} \Phi_i(e)$

Output: Parameters θ and lexicon Λ

For all pairs of 'good' and 'bad' parses, if their scores violate the margin, add each to 'right' and 'error' sets respectively

> θ weights γ margin $\phi_i(y) = \phi(x_i, y)$ $\Delta_i(y, y') = |\Phi_i(y) - \Phi_i(y')|_1$

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)

Step 2: (Update parameters)

- a. Set $G_i \leftarrow MAXV_i(GEN(x_i; \Lambda); \theta)$ and $B_i \leftarrow \{e | e \in GEN(x_i; \Lambda) \land \neg \mathcal{V}_i(y)\}$
- b. Construct sets of margin violating good and bad parses:

$$R_{i} \leftarrow \{g | g \in G_{i} \land \exists b \in B_{i} \\ s.t. \langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \} \\ E_{i} \leftarrow \{b | b \in B_{i} \land \exists g \in G_{i} \\ s.t. \langle \theta, \Phi_{i}(g) - \Phi_{i}(b) \rangle < \gamma \Delta_{i}(g, b) \}$$

c. Apply the additive update: $\theta \leftarrow \theta + \frac{1}{|R_i|} \sum_{r \in R_i} \Phi_i(r)$ $-\frac{1}{|E_i|} \sum_{e \in E_i} \Phi_i(e)$

Output: Parameters θ and lexicon Λ

Update towards violating 'good' parses and against violating 'bad' parses

> θ weights $\phi_i(y) = \phi(x_i, y)$

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Return grammar

 θ weights

 Λ lexicon

Features and Initialization

- Parse: indicate lexical entry and combinator use
- Logical form: indicate local properties of logical forms, such as constant co-occurrence

Lexicon Initialization

- Often use an NP list
- Sometimes include additional, domain independent entries for function words

Initial Weights

 Positive weight for initial lexical indicator features

Unified Learning Algorithm

$$\begin{split} \mathcal{V} \text{ validation function} \\ GENLEX(x,\mathcal{V};\lambda,\theta) \\ \text{ lexical generation function} \end{split}$$

- Two parts of the algorithm we still need to define
- Depend on the task and supervision signal

Unified Learning Algorithm

Supervised Learning

show me the afternoon flights from LA to boston

 $\lambda x.flight(x) \land during(x, AFTERNOON) \land from(x, LA) \land to(x, BOS)$

Supervised Learning

show me the afternoon flights from LA to boston

 $\lambda x.flight(x) \land during(x, AFTERNOON) \land from(x, LA) \land to(x, BOS)$

Parse structure is latent

Supervised Learning

Supervised Validation Function

• Validate logical form against gold label

$$\mathcal{V}_{i}(y) = \begin{cases} true & \text{if } LF(y) = z_{i} \\ false & \text{else} \end{cases}$$
$$y \text{ parse} \\ z_{i} \text{ labeled logical form} \\ LF(y) \text{ logical form at the root of } y \end{cases}$$

Supervised Template-based $GENLEX(x, z; \Lambda, \theta)$

I want a flight to new york $\lambda x.flight(x) \wedge to(x, NYC)$

Supervised Template-based GENLEX

- Use templates to constrain lexical entries structure
- For example: from a small annotated dataset

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash ADJ : \lambda x.v_1(x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash PP : \lambda x.\lambda y.v_1(y,x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash N : \lambda x.v_1(x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash S \setminus NP/NP : \lambda x.\lambda y.v_1(x,y)]$$

. . .

Supervised Template-based GENLEX

Need lexemes to instantiate templates

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash ADJ : \lambda x.v_1(x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash PP : \lambda x.\lambda y.v_1(y, x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash N : \lambda x.v_1(x)]$$

$$\lambda(\omega, \{v_i\}_1^n) [\omega \vdash S \setminus NP/NP : \lambda x.\lambda y.v_1(x, y)]$$

Supervised Template-based $GENLEX(x, z; \Lambda, \theta)$

I want a flight to new york $\lambda x.flight(x) \wedge to(x, NYC)$

I want

a flight

flight

flight to new

• • •

Supervised Template-based $GENLEX(x, z; \Lambda, \theta)$

I want a flight to new york $\lambda x.flight(x) \wedge to(x, NYC)$ All logical constants from labeled logical form NYC

I want

a flight

flight

flight to new

. . .
Supervised Template-based $GENLEX(x, z; \Lambda, \theta)$

I want a flight to new york $\lambda x.flight(x) \wedge to(x, NYC)$

Supervised Template-based $GENLEX(x, z; \Lambda, \theta)$

I want a flight to new york

 $\lambda x.flight(x) \wedge to(x, NYC)$

. . .

. . .

Initialize templates

 $\begin{array}{l} \text{flight} \vdash N : \lambda x.flight(x) \\ \text{I want} \vdash S/NP : \lambda x.x \\ \text{flight to new} : S \backslash NP/NP : \lambda x.\lambda y.to(x,y) \end{array}$

- GENLEX outputs a large number of entries
- For fast parsing: use the labeled logical form to prune
- Prune partial logical forms that can't lead to labeled form

• •	from	New York	to	Boston	•••
	$\frac{PP/NP}{\lambda x.\lambda y.to(y,x)}$	NP NYC	$\frac{PP/NP}{\lambda x.\lambda y.to(y,x)}$	$\frac{NP}{BOS}$	

•	from	New York	to	Boston	• •
	PP/NP	NP	PP/NP	NP	
	$\lambda x.\lambda y.to(y,x)$	NYC	$\lambda x.\lambda y.to(y,x)$	BOS	
	$\rightarrow PP$		$\rightarrow PP$		
	$\lambda y.to(y,NYC)$		$\lambda y.to(y, BOS)$		

•	from	New York	to	Boston	• •
	PP/NP	NP	PP/NP	NP	
	$\lambda x.\lambda y.to(y,x)$	NYC	$\lambda x.\lambda y.to(y,x)$	BOS	
	PP >		PP >		
	$\lambda y.to(y, NYC)$		$\lambda y.to(y, BOS)$		

from	New York	to	Boston	••
PP/NP	\overline{NP}	PP/NP	\overline{NP}	
$\lambda x.\lambda y.to(y,x)$	NYC	$\lambda x.\lambda y.to(y,x)$	BOS	
PP	>	PP	>	
$\lambda y.to(y, N)$	VYC)	$\lambda y.to(y, B)$	OS)	
		$\overline{N \backslash N}$		
		$\lambda f. \lambda y. f(y) \land to(y, BOS)$		

Supervised Template-based GENLEX

Summary

No initial expert knowledge	
Creates compact lexicons	\checkmark
Language independent	
Representation independent	
Easily inject linguistic knowledge	\checkmark
Weakly supervised learning	\checkmark

- Automatically learns the templates
 - Can be applied to any language and many different approaches for semantic modeling
- Two step process
 - Initialize lexicon with labeled logical forms
 - "Reverse" parsing operations to split lexical entries

Initialize lexicon with labeled logical forms

For every labeled training example:

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

Initialize the lexicon with:

I want a flight to Boston $\vdash S : \lambda x.flight(x) \land to(x, BOS)$

• Splitting lexical entries

I want a flight to Boston $\vdash S : \lambda x.flight(x) \land to(x, BOS)$

I want a flight $\vdash S/(S|NP) : \lambda f.\lambda x.flight(x) \land f(x)$ to Boston $\vdash S|NP : \lambda x.to(x, BOS)$

• Splitting lexical entries

I want a flight to Boston $\vdash S : \lambda x.flight(x) \land to(x, BOS)$

• Splitting CCG categories:

I. Split logical form $h \mbox{ to } f \mbox{ and } g \mbox{ s.t.}$

$$f(g) = h \text{ or } \lambda x.f(g(x)) = h$$

 $\lambda f.\lambda x.flight(x) \wedge f(x)$ $\lambda x.to(x, BOS)$

 $S: \lambda x.flight(x) \wedge to(x, BOS)$

 $\lambda y.\lambda x.flight(x) \wedge f(x,y)$ BOS

- Splitting CCG categories:
 - I. Split logical form $h \mbox{ to } f \mbox{ and } g \mbox{ s.t.}$

$$f(g) = h \text{ or } \lambda x.f(g(x)) = h$$

2. Infer syntax from logical form type

$$\begin{split} S/(S|NP) &: \lambda f.\lambda x.flight(x) \wedge f(x) \\ S|NP &: \lambda x.to(x,BOS) \end{split}$$

 $S/NP: \lambda y.\lambda x.flight(x) \land f(x,y)$ NP: BOS

 $S: \lambda x.flight(x) \wedge to(x, BOS)$

• Split text and create all pairs

I want a flight to Boston $\vdash S : \lambda x.flight(x) \land to(x, BOS)$

. . .

I want $S/(S|NP) : \lambda f.\lambda x.flight(x) \wedge f(x)$ a flight to Boston $S|NP : \lambda x.to(x, BOS)$

I want a flight $S/(S|NP) : \lambda f.\lambda x.flight(x) \land f(x)$ to Boston $S|NP : \lambda x.to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find split that most increases score
- 3. Return new lexical entries

Parameter Initialization

Compute co-occurrence (IBM Model I) between words and logical constants

Initial score for new lexical entries: average over pairwise weights

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

I want a flight to Boston $\frac{S}{\lambda x.flight(x) \wedge to(x, BOS)}$

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

Iteration 2

 $\frac{\text{I want a flight}}{S/(S|NP)} \quad \begin{array}{c} \text{to Boston} \\\hline S|NP \\ \lambda f.\lambda x.flight(x) \wedge f(x) \\\hline S \\ \lambda x.flight(x) \wedge to(x, BOS) \\\hline \end{array} > \\ \end{array}$

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

Iteration 2

I want a flight to Boston $\lambda x.flight(x) \wedge to(x, BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

Iteration 2

Experiments

- Two database corpora:
 - Geo880/Geo250 [Zelle and Mooney 1996; Tang and Mooney 2001]
 - ATIS [Dahl et al. 1994]
- Learning from sentences paired with logical forms
- Comparing template-based and unificationbased GENLEX methods

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 2011]

Results

[Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; 2011]

GENLEX Comparison

Templates Unification

No initial expert knowledge		\checkmark
Creates compact lexicons	\checkmark	
Language independent		\checkmark
Representation independent		\checkmark
Easily inject linguistic knowledge	\checkmark	
Weakly supervised learning	\checkmark	

GENLEX Comparison

Templates Unification

No initial expert knowledge		\checkmark
Creates compact lexicons	\checkmark	
Language independent		\checkmark
Representation independent		\checkmark
Easily inject linguistic knowledge	\checkmark	
Weakly supervised learning	\checkmark	?

Recap CCGs

[Steedman 1996, 2000]

Recap Unified Learning Algorithm

Initialize θ using $\Lambda_0\;$, $\Lambda \leftarrow \Lambda_0$

For t = 1 ... T, i = 1 ... n:

Step 1: (Lexical generation)
Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

- 2 steps:
 - Lexical generation
 - Parameter update

Recap Learning Choices

Validation Function

 $\mathcal{V}: \mathcal{Y} \to \{t, f\}$

- Indicates correctness of a parse y
- Varying \mathcal{V} allows for differing forms of supervision

Lexical Generation Procedure

$GENLEX(x, \mathcal{V}; \Lambda, \theta)$

- Given: sentence x validation function \mathcal{V} lexicon Λ parameters θ
- Produce a overly general set of lexical entries

Unified Learning Algorithm

Weak Supervision

What is the largest state that borders Texas? New Mexico

Weak Supervision

What is the largest state that borders Texas? New Mexico

at the chair, move forward three steps past the sofa

[Clarke et al. 2010; Liang et al. 2011; Chen and Mooney 2011; Artzi and Zettlemoyer 2013b]

Weak Supervision

What is the largest state that borders Texas? New Mexico

at the chair, move forward three steps past the sofa

Execute the logical form and observe the result

Weakly Supervised Validation Function

 $\mathcal{V}_{i}(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_{i} \\ false & \text{else} \end{cases}$ $y \in \mathcal{Y} \text{ parse} \\ e_{i} \in \mathcal{E} \text{ available execution result} \\ EXEC(y) : \mathcal{Y} \to \mathcal{E} \\ \text{logical form at the root of } y \end{cases}$
$\mathcal{V}_{i}(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_{i} \\ false & \text{else} \end{cases}$ Domain-specific execution function: SQL query engine, navigation robot $\begin{cases} y \in \mathcal{Y} \text{ parse} \\ e_{i} \in \mathcal{E} \text{ available execution result} \\ EXEC(y) : \mathcal{Y} \rightarrow \mathcal{E} \\ \text{logical form at the root of } y \end{cases}$

Weakly Supervised
Validation Function
$$\mathcal{V}_i(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_i \\ false & \text{else} \end{cases}$$
Depends on
supervision $\mathcal{V}_i(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_i \\ false & \text{else} \end{cases}$ $\mathcal{V}_i(y) \approx e_i \\ false & \text{else} \end{cases}$ Domain-specific
execution function:
SQL query engine,
navigation robot $y \in \mathcal{Y}$ parse
 $e_i \in \mathcal{E}$ available execution result $EXEC(y) : \mathcal{Y} \rightarrow \mathcal{E}$
logical form at the root of y

Weakly Supervised
Validation Function
$$\mathcal{V}_i(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_i \\ false & \text{else} \end{cases}$$
Depends on
supervision $\mathcal{V}_i(y) = \begin{cases} true & \text{if } EXEC(y) \approx e_i \\ false & \text{else} \end{cases}$ $\mathcal{V}_i(y) \approx e_i \\ false & \text{else} \end{cases}$ Domain-specific
execution function:
SQL query engine,
navigation robot $y \in \mathcal{Y}$ parse
 $e_i \in \mathcal{E}$ available execution result $EXEC(y) : \mathcal{Y} \rightarrow \mathcal{E}$
logical form at the root of y

In general: execution function is a natural part of a complete system

Example EXEC(y):

Robot moving in an environment

Example EXEC(y):

Robot moving in an environment

Example supervision:

Complete Demonstration

Example EXEC(y):

Robot moving in an environment

Example EXEC(y):

Robot moving in an environment

I want a flight to new york

 $\lambda x.flight(x) \wedge to(x, NYC)$

. . .

. . .

 $\begin{array}{l} \text{flight} \vdash N : \lambda x.flight(x) \\ \text{I want} \vdash S/NP : \lambda x.x \\ \text{flight to new} : S \backslash NP/NP : \lambda x.\lambda y.to(x,y) \end{array}$

I want a flight to new york

flight, from, to, $ground_transport, dtime, atime,$ NYC, BOS, LA, SEA, \dots

(flight, {flight})
(I want, {})
(flight to new, {to, NYC})
.... Many more

lexemes

Initialize templates Use all logical constants in the system instead

flight $\vdash N : \lambda x.flight(x)$ I want $\vdash S/NP : \lambda x.x$ flight to new : $S \setminus NP/NP : \lambda x.\lambda y.to(x, y)$

Huge number of lexical entries

- Gradually prune lexical entries using a coarseto-fine semantic parsing algorithm
- Transition from coarse to fine defined by typing system

 $\begin{array}{c} \textbf{Lastical Schwarz} \\ \textbf{Lastical Sch$

Coarse Ontology

 $\begin{aligned} flight_{\langle fl,t\rangle}, from_{\langle fl,\langle loc,t\rangle\rangle}, to_{\langle fl,\langle loc,t\rangle\rangle}, \\ ground_transport_{\langle gt,t\rangle}, dtime_{\langle tr,\langle ti,t\rangle\rangle}, atime_{\langle tr,\langle ti,t\rangle\rangle}, \\ NYC_{ci}, BOS_{ci}, JFK_{ap}, LAS_{ap}, \ldots \end{aligned}$

 $flight_{<fl,t>}$ $fl \rightarrow e$ $t \rightarrow t$ $flight_{<e,t>}$

 $\begin{aligned} flight_{\langle e,t\rangle}, from_{\langle e,\langle e,t\rangle\rangle}, to_{\langle e,\langle e,t\rangle\rangle}, \\ ground_transport_{\langle e,t\rangle}, dtime_{\langle e,\langle e,t\rangle\rangle}, atime_{\langle e,\langle e,t\rangle\rangle}, \\ NYC_e, BOS_e, LA_e, SEA_e, \ldots \end{aligned}$

Generalize types

Coarse Ontology

 $flight_{\langle fl,t\rangle}, from_{\langle fl,\langle loc,t\rangle\rangle}, to_{\langle fl,\langle loc,t\rangle\rangle},$ $ground_transport_{\langle gt,t\rangle}, dtime_{\langle tr,\langle ti,t\rangle\rangle}, atime_{\langle tr,\langle ti,t\rangle\rangle},$ $NYC_{ci}, BOS_{ci}, JFK_{ap}, LAS_{ap}, \ldots$

Generalize types

 $\begin{aligned} flight_{\langle e,t\rangle}, from_{\langle e,\langle e,t\rangle\rangle}, to_{\langle e,\langle e,t\rangle\rangle}, \\ ground_transport_{\langle e,t\rangle}, dtime_{\langle e,\langle e,t\rangle\rangle}, atime_{\langle e,\langle e,t\rangle\rangle}, \\ NYC_e, BOS_e, LA_e, SEA_e, \ldots \end{aligned}$

Merge identically typed constants $c1_{\langle e,t \rangle}, c2_{\langle e,\langle e,t \rangle \rangle}, c3_e, \dots$

I want a flight to new york

All possible sub-strings

I want

a flight

flight

• • •

flight to new

 $c1_{\langle e,t \rangle}$ $c2_{\langle e,\langle e,t \rangle\rangle}$

 $c3_e$

I want a flight to new york

flight $\vdash N : \lambda x.c1(x)$

. . .

Prune by parsing I want $\vdash S/NP : \lambda x.x$ flight to new $\vdash S \setminus NP/NP : \lambda x.\lambda y.c2(x,y)$

Keep only lexical entries that participate in complete parses, which score higher than the current best valid parse by a margin

Weakly Supervised
$$GENLEX(x, \mathcal{V}; \Lambda, \theta)$$

I want a flight to new york

flight $\vdash N : \lambda x.c1(x)$ Prune byI want $\vdash S/NP : \lambda x.x$ parsingflight to now $\vdash S \setminus NP/NP : \lambda x.\lambda y.c2(x,y)$

. . .

Keep only lexical entries that participate in complete parses, which score higher than the current best valid parse by a margin

Weakly Supervised
$$GENLEX(x, \mathcal{V}; \Lambda, \theta)$$

I want a flight to new york

flight $\vdash N : \lambda x . c1(x)$

Replace all coarse constants with all similarly typed constants

. . .

Ţ

flight $\vdash N : \lambda x.flight(x)$ flight $\vdash N : \lambda x.ground_transport(x)$ flight $\vdash N : \lambda x.nonstop(x)$ flight $\vdash N : \lambda x.connecting(x)$

Weak Supervision Requirements

- Know how to act given a logical form
- A validation function
- Templates for lexical induction

Experiments

Instruction:

at the chair, move forward three steps past the sofa Demonstration:

- Situated learning with joint inference
- Two forms of validation
- Template-based $GENLEX(x, \mathcal{V}; \Lambda, \theta)$

Unified Learning Algorithm Extensions

- Loss-sensitive learning
 - Applied to learning from conversations
- Stochastic gradient descent
 - Approximate expectation computation

- Structured perceptron
- A unified learning algorithm
- Supervised learning
- Weak supervision

Modeling

Show me all papers about semantic parsing Parsing with CCG $\lambda x.paper(x) \wedge topic(x, SEMPAR)$

Modeling

Show me all papers about semantic parsing Parsing with CCG $\lambda x.paper(x) \wedge topic(x, SEMPAR)$

What should these logical forms look like?

But why should we care?

Modeling Considerations

Modeling is key to learning compact lexicons and high performing models

- Capture language complexity
- Satisfy system requirements
- Align with language units of meaning

Querying Databases

State			
Abbr.	Capital	Pop.	
AL	Montgomery	3.9	
AK	Juneau	0.4	
AZ	Phoenix	2.7	
WA	Olympia	4.1	
NY	Albany	17.5	
IL	Springfield	11.4	

Border						
State I	State2					
WA	OR					
WA	ID					
CA	OR					
CA	NV					
CA	AZ					

Mountains

Name	State					
Bianca	СО					
Antero	CO					
Rainier	WA					
Shasta	CA					
Wrangel	AK					
Sill	CA					
Bor						
EID						

[Zettlemoyer and Collins 2005]

Querying Databases

State			Border			Mountains	
Abbr.	Capital	Pop.	State I	State2		Name	State
AL Montgomery			WA	OR		Bianca	СО
	3.9	WA	ID		Antero	СО	
AK	Juneau	0.4	CA	OR		Rainier	WA
AZ	Phoenix	2.7	CA	NV		Shaata	\sim
				A 📷	-	Shasta	CA

What is the capital of Arizona? How many states border California? What is the largest state?
State			В
Abbr.	Capital	Pop.	Sta
ΔΙ	Montgomery	39	
	r longomery	5.7	
AK	Juneau	0.4	C
		0.7	
AZ	Phoenix	2./	

Border			
State I	State2		
WA OR			
WA ID			
CA	OR		
CA NV			

Μ	oun	taiı	ns

Name	State
Bianca	СО
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of <mark>Arizona</mark>? How many states border <mark>California</mark>? What is the largest state?

Noun Phrases

Sta

State			Bor	de
Abbr.	Capital	Pop.	State I	Sta
			WA	
	Montgomery	3.9	WA	
AK	Juneau	0.4	CA	C
		2.7	CA	
AZ	Phoenix	2./	\frown \land	^

er	Mountains	
tate2	Name	State
OR	Bianca	СО
ID	Antero	СО
OR	Rainier	WA
NV	Shasta	CA

What is the capital of Arizona? How many states **border** California? What is the largest state?

Verbs

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border			
State I	State2		
WA	OR		
WA	ID		
CA	OR		
CA	NV		

Moun	tains
Name	State

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona? How many states border California? What is the largest state?

Nouns

State			
Abbr.	Capital	Pop.	
AL	Montgomery	3.9	
AK	Juneau	0.4	
AZ	Phoenix	2.7	-

Border		
State I	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	

Μ	ountains	

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital <mark>of</mark> Arizona? How many states border California? What is the largest state?

Prepositions

State			E
Abbr.	Capital	Pop.	St
AL	Montgomery	3.9	
AK	Juneau	0.4	
AZ	Phoenix	2.7	

Border		
State I	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
	A	

· · · · · · · · · · · · · · · · · · ·
ounfaine
Curreatis

Name	State
Bianca	CO
Antero	CO
Rainier	WA
Shasta	CA

What is the capital of Arizona? How many states border California? What is the largest state?

Superlatives

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border			
State I	State2		
WA	OR		
WA	ID		
CA	OR		
CA	NV		

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier	WA	

Shasta

What is the capital of Arizona? How many states border California? What is the largest state?

Determiners

CA

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7

Border			
State I	State2		
WA	OR		
WA	ID		
CA	OR		
CA	NV		

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier WA		
Shasta	CA	

What is the capital of Arizona? How many states border California? What is the largest state?

Questions

Referring to DB Entities

Noun Phrases

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier	WA		
Shasta	CA		

Noun phrases name specific entities

Washington

WA

Florida The Sunshine State FL

Noun Phrases

State		Mountains		Noun phrases name
Abbr.	Capital	Name	State	specific entities
ΔΙ	Montgomery	Bianca	со	Washington
	Thomegomery	Antero	со	
AK	Juneau	Rainier	WA	T WA
AZ	Phoenix	Shasta	CA	WA
WA	Olympia			Florida
NY	Albany	$e extsf{-typed}$		The Sunshine State
IL	Springfield	entities		FL
				FL

Noun Phrases

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier WA			
Shasta CA			

Noun phrases name specific entities

Washington

NP

WA

The Sunshine State

NP

FL

Verb Relations

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Border			
State I	State2		
WA	OR		
WA	ID		
CA	OR		
CA	NV		

Verbs express relations between entities

Nevada borders California border(NV, CA)

Verb Relations

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Border			
State I	State2		
WA	OR		
WA	ID		
CA	OR		
CA	NV		

Verbs express relations between entities

Nevada borders California border(NV,CA) true

Verb Relations

State				
Abbr.	Capital			
AL	Montgomery	Nevada	borders	California
AK	Juneau	$NP \\ NV$	$\frac{S \backslash NP/NP}{\lambda x.\lambda y.border(y,x)}$	$NP \\ CA$
AZ	Phoenix		$\frac{S \setminus NP}{S \setminus NP}$	>
WA	Olympia		$\lambda y.border(y,$	CA)
NY	Albany		S	<
IL	Springfield		boraer(NV, CA)	

Nouns

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier WA			
Shasta CA			

Nouns are functions that define entity type

state

 $\lambda x.state(x)$

 $\begin{array}{l} \text{mountain} \\ \lambda x.mountain(x) \end{array}$

Nouns

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	IL Springfield	

Mountains		
Name	State	
Bianca	СО	
Antero	СО	
Rainier	WA	
Shasta	CA	

Nouns are functions that define entity type

state

 $\lambda x.state(x)$

mountain $e \rightarrow t$ functions $\lambda x.mountain(x)$ {BIANCA ANTERO define sets

Nouns

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Mountains		tains	Nouns are functions	
	Name	State	that define entity type	
	Bianca	CO	state	
	Antero	CO	$\frac{N}{N}$	
	Rainier	WA	$\lambda x.state(x)$	
	Shasta	CA		

mountain

 $N \\ \lambda x.mountain(x)$

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier WA		
Shasta	CA	

Prepositional phrases are conjunctive modifiers

mountain in Colorado

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier	WA	
Shasta	CA	

Prepositional phrases are conjunctive modifiers

mountain

 $\lambda x.mountain(x)$

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier WA		
Shasta	CA	

Prepositional phrases are conjunctive modifiers

mountain in Colorado $\lambda x.mountain(x) \land$ in(x, CO)

State				
Abbr.	Capital	mountain	in	Colorado
AL	Montgomery	\overline{N}	PP/NP	NP
AK	Juneau	$\lambda x.mountain(x)$	$\frac{\lambda y.\lambda x.in(x,y)}{\nabla D}$	<i></i> >
AZ	Phoenix		$PP \\ \lambda x.in(x,$	CO)
WA	Olympia		$N \setminus N$	$\overline{\mathcal{V}}$
NY	Albany		$\lambda f.\lambda x.f(x) \land$	$\frac{in(x, CO)}{<}$
IL	Springfield	$\lambda x.mounte$	$N ain(x) \wedge in(x, C)$	CO)

Function Words

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Border		
State I	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
\sim	A 7	

Certain words are used to modify syntactic roles

state that borders California $\lambda x.state(x) \wedge border(x, CA)$ {OR, NV, AZ}

Function Words

State					
Abbr.	Capital	state	that	borders	California
AL	Montgomery	$\frac{N}{NV}$	$\overline{PP/(S\backslash NP)}_{\lambda f f}$	$\frac{S \setminus NP/NP}{\lambda x \ \lambda u \ border(u \ x)}$	$\frac{NP}{CA}$
AK	Juneau		<i>Х</i> Ј.Ј	$\frac{\lambda x \cdot \lambda y \cdot \delta v \cdot u \cdot r \cdot (y, x)}{S \setminus NP}$	<i>——</i> >
AZ	Phoenix			$\frac{\lambda y.border(y,}{DD}$	$CA) \longrightarrow$
WA	Olympia			$\lambda y.border(y, CA)$	
NY	Albany		$\lambda f. \lambda$	$N \setminus N$ $(y) \wedge border(y, C)$	A)
IL	Springfield		$\lambda x.st$	$N \\ tate(x) \land (x, CA)$	<

Function Words

State		В
Abbr.	Capital	Sta
AI	Montgomery	
	Thomesonnery	
AK	Juneau	С
AZ	Phoenix	C
WA	Olympia	
NY	Albany	
IL	Springfield	

Border		
State I	State2	
WA	OR	
WA	ID	
CA	OR	
CA	NV	
	A	

Certain words are used to modify syntactic roles

- May have other senses with semantic meaning
- May carry content in other domains

Other common function words: which, of, for, are, is, does, please

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier	WA	
Shasta	CA	

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

the mountain in Washington

L

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier	WA		
Shasta	CA		

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

mountain in Washington $\lambda x.mountain(x) \wedge in(x, WA)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier	WA		
Shasta	CA		

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

the mountain in Washington $\iota x.mountain(x) \land in(x, WA)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier	WA		
Shasta	CA		

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

the mountain in Colorado $\iota x.mountain(x) \land in(x, CO)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier WA		
Shasta	CA	

Definite determiner selects the single members of a set when such exists

$$: (e \to t) \to e$$

the mountain in Colorado $\iota x.mountain(x) \land in(x, CO)$

No information to disambiguate

State			
Abbr.	Capital		
AL	Montgomery	the	mountain in Colorado
AK	Juneau	$\frac{NP/N}{\lambda f. \iota x. f(x)}$	• •
AZ	Phoenix	J J /	\overline{N}
WA	Olympia		$\lambda x.mountain(x) \land in(x, CO)$
NY	Albany	$\frac{NP}{NP} \rightarrow in(x, CO)$	
IL	Springfield	6.1.116	$Ouricult(x) \land cr(x, CO)$

State	
Abbr.	Capital
AL	Montgomery
AK	Juneau
AZ	Phoenix
WA	Olympia
NY	Albany
IL	Springfield

Mountains		
Name	State	
Bianca	CO	
Antero	CO	
Rainier	WA	
Shasta	CA	

Indefinite determiners are select any entity from a set without a preference

$$4: (e \to t) \to e$$

state with a mountain $\lambda x.state(x) \wedge in(\mathcal{A}y.mountain(y), x)$

[Steedman 2011; Artzi and Zettlemoyer 2013b]

State		
Abbr.	Capital	
AL	Montgomery	
AK	Juneau	
AZ	Phoenix	
WA	Olympia	
NY	Albany	
IL	Springfield	

Mountains			
Name	State		
Bianca	CO		
Antero	CO		
Rainier	WA		
Shasta	CA		

Indefinite determiners are select any entity from a set without a preference

$$4: (e \to t) \to e$$

[Steedman 2011; Artzi and Zettlemoyer 2013b]

Using the indefinite quantifier simplifies CCG handling of the indefinite determiner

Superlatives

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure

the largest state

 $\begin{array}{ccc} argmax(\lambda x.state(x),\lambda y.pop(y)) \\ \text{Min or max} & \dots \text{ over this} & \dots \text{ according to} \\ & \text{set} & \text{this measure} \end{array}$

AL	3.9
AK	0.4
Seattle	2.7
San Francisco	4. I
NY	17.5
IL	11.4

Superlatives

State		
Abbr.	Capital	Pop.
AL	Montgomery	3.9
AK	Juneau	0.4
AZ	Phoenix	2.7
WA	Olympia	4.1
NY	Albany	17.5
IL	Springfield	11.4

Superlatives select optimal entities according to a measure

the largest state

argmax($\lambda x.state(x$	$), \lambda y. pop(y))$
Min or max	over this	according to
	set	this measure

AL	3.9
AK	0.4
Seattle	2.7
San Francisco	4. I
NY	17.5
IL	11.4
Superlatives

State			
Abbr.	Capi		
AL	Montgo		
AK	Junea	the largest	state
AZ	Phoer	$\frac{NP/N}{\lambda f.argmax(\lambda x.f(x), \lambda y.pop(y))}$	$N \\ \lambda x.state(x)$
WA	Olym	NP	>
NY	Albar	$argmax(\lambda x.state(x), \lambda y.p)$	oop(y))
IL	Springf		

Superlatives

State				
Abbr.	Capit			
AL	Montgo	the most	populated	state
AK	Junea	$\frac{NP/N/N}{NP(N) + f(m) + h(m)}$	$\frac{N}{\sum m m cm(m)}$	$\frac{N}{\sum_{x \in x \in x}}$
AZ	Phoer	$\frac{\lambda g.\lambda J.argmax(\lambda x.J(x),\lambda y.g(y))}{NP/N}$	\rightarrow	$\lambda x.state(x)$
WA	Olym	$\lambda f.argmax(\lambda x.f(x), \lambda y.po)$	p(y))	>
NY	Albar	$argmax(\lambda x.state(x))$	$), \lambda y. pop(y))$	
IL	Springf			

State		Bor	der	Moun	tains	
Abbr.	Capital	Pop.	State I	State2	Name	State
		2.0	WA	OR	Bianca	CO
	Montgomery	3.7	WA	ID	Antero	СО
AK	Juneau	0.4	CA	OR	Rainier	WA

Which mountains are in Arizona?

Represent questions as the queries that generate their answers

State			Bor	der	Moun	tains
Abbr.	Capital	Pop.	State I	State2	Name	State
	Mantaana	2.0	WA	OR	Bianca	CO
	Montgomery	3.7	WA	ID	Antero	СО
AK	Juneau	0.4	CA	OR	Rainier	WA

Which mountains are in Arizona?

SELECT Name FROM Mountains WHERE State = AZ Represent questions as the queries that generate their answers

Reflects the query SQL

State			Bor	der	Moun	tains
Abbr.	Capital	Pop.	Statel	State2	Name	State
	Mantaana	2.0	WA	OR	Bianca	CO
	Montgomery	3.7	WA	ID	Antero	СО
AK	Juneau	0.4	CA	OR	Rainier	

Which mountains are in Arizona?

 $\lambda x.mountain(x) \wedge in(x, AZ)$

Represent questions as the queries that generate their answers

Reflects the query SQL

State				Bor	der	Moun	tains
Abbr.	Capital	Pop.		State I	State2	Name	State
		2.0		WA	OR	Bianca	СО
	Montgomery	3.7		WA	ID	Antero	СО
AK	Juneau	0.4		CA	OR	Rainier	WA

How many states border California? $count(\lambda x.state(x) \land border(x, CA))$

Represent questions as the queries that generate their answers

Reflects the query SQL

DB Queries

- Refer to entities in a database
- Query over type of entities, order and other database properties

Next	 How does this approach hold for physica objects? What do we need to change? Add?

[Matuszek et al. 2012a]

all the arches except the green arch

all the arches except the green arch

the blue triangle and the green arch

the blue triangle and the green arch

arches $\lambda x.arch(x)$

arches $\lambda x.arch(x)$

the arches $\iota x.arch(x)$

blue blocks $\lambda x.blue(x) \wedge block(x)$

brown block $\lambda x.brown(x) \wedge block(x)$

- All entities are sets
- Space of entities includes singletons and sets of multiple objects

- All entities are sets
- Space of entities includes singletons and sets of multiple objects

Cognitive evidence for sets being a primitive type

[Scontras et al. 2012]

Plurality is a modifier and entities are defined to be sets.

Plurality is a modifier and entities are defined to be sets.

arch $\lambda x.arch(x) \wedge sg(x)$

Plurality is a modifier and entities are defined to be sets.

arch $\lambda x.arch(x) \wedge sg(x)$

, {, **,**

Plurality is a modifier and entities are defined to be sets.

arches $\lambda x.arch(x) \wedge plu(x)$

Plurality and Determiners

Definite determiner must select a single set. E.g., heuristically select the maximal set.

the arches $\iota x.arch(x) \wedge plu(x)$

Adjectives

Adjectives are conjunctive modifiers

blue objects $\lambda x.blue(x) \wedge obj(x) \wedge plu(x)$

Adjectives

Adjectives are conjunctive modifiers

blue objects $\lambda x.blue(x) \wedge obj(x) \wedge plu(x)$

DBs and Physical Objects

- Describe and refer to entities
- Ask about objects and relations between them
- Next: move into more dynamic scenarios

		Borc	lers	
States		Statel	State2	
Abbr.	Capital	WA	OR	
AL	Montgomery	WA	ID	
	Juneau	СА	OR	

Beyond Queries

Noun phrases	Specific entities
Nouns	Sets of entities
Prepositional phrases Adjectives	Constrain sets
Questions	Queries to generate response

Beyond Queries

Noun phrases	Specific entities
Nouns	Sets of entities
Prepositional phrases Adjectives	Constrain sets
Questions	Queries to generate response

Works well for natural language interfaces for DBs

How can we use this approach for other domains?

- Common approach to represent instructional language
- Natural for executing commands

go forward along the stone hall to the intersection with a bare concrete hall

Verify(front : GRAVEL_HALL) Travel() Verify(side : CONCRETE_HALL)

- Common approach to represent instructional language
- Natural for executing commands

 $\begin{array}{l} \mbox{leave the room and go right} \\ do_seq(verify(room(current_loc)), \\ move_to(unique_thing(\lambda x.equals(distance(x), 1))), \\ move_to(right_loc)) \end{array}$

- Common approach to represent instructional language
- Natural for executing commands

Click Start, point to Search, and the click For Files and Folders. In the Search for box, type "msdownld.tmp".

 $LEFT_CLICK(Start)$ $LEFT_CLICK(Search)$

TYPE_INFO(Search for:, "msdownld.tmp")

Dissonance between structure of semantics and language

- Poor generalization of learned models
- Difficult to capture complex language

Spatial and Instructional Language

Name objects

Noun phrases	Specific entities
Nouns	Sets of entities
Prepositional phrases Adjectives	Constrain sets

Instructions to execute

Verbs	Davidsonian events
Imperatives	Sets of events

Describing an environment

Executing instructions

[Artzi and Zettlemoyer 2013b]

- Model actions and imperatives
- Consider how the state of the agent influences its understanding of language

place your back against the wall of the t intersection

turn left

go forward along the pink flowered carpet hall two segments to the intersection with the brick hall

- Maps are graphs of connected positions
- Positions have properties and contain objects

- Agent can move forward, turn right and turn left
- Agent perceives clusters of positions
- Clusters capture objects

- Agent can move forward, turn right and turn left
- Agent perceives clusters of positions
- Clusters capture objects

- Agent can move forward, turn right and turn left
- Agent perceives clusters of positions
- Clusters capture objects

- Agent can move forward, turn right and turn left
- Agent perceives clusters of positions
- Clusters capture objects

- Agent can move forward, turn right and turn left
- Agent perceives clusters of positions
- Clusters capture objects

- Refer to objects similarly to our previous domains
- "Query" the world

Nouns denote sets of objects

chair

 $\lambda x.chair(x)$

Definite determiner selects a single entity

Definite determiner selects a single entity

 $\iota: (e \to t) \to e$

Definite determiner selects a single entity

Definite determiner selects a single entity

Definite determiner selects a single entity

the chair

 $\iota x.chair(x)$

Must disambiguate to select a single entity

Definite determiner selects a single entity

the chair $\iota x.chair(x)$

Definite determiner depends on agent state

Definite determiner selects a single entity

the chair $\iota x.chair(x)$

Definite determiner depends on agent state

Events taking place in the world

Events refer to environment

Implicit requests

Events taking place in the world

Events refer to environment

Implicit requests

Events taking place in the world

Events refer to environment

Implicit

requests

- Actions in the world are constrained by adverbial modifiers
- The number of such modifiers is flexible

Adverbial modification is thus seen to be logically on a par with adjectival modification: what adverbial clauses modify is not verbs, but the events that certain verbs introduce.

Davidson 1969 (quoted in Maienborn et al. 2010)

- Use event variable to represent events
- Verbs describe events like nouns describe entities
- Adverbials are conjunctive modifiers

Vincent shot Marvin in the car accidentally $\exists a.shot(a, VINCENT, MARVIN) \land$ $in(a, \iota x.car(x)) \land \neg intentional(a)$

Active

Vincent shot Marvin $\exists a.shot(a, VINCENT, MARVIN)$

[Parsons 1990]

Vincent shot Marvin $\exists a.shot(a, VINCENT, MARVIN)$

Passive Marvin was shot by Vincent

Active

Active

Vincent shot Marvin $\exists a.shot(a, VINCENT, MARVIN)$

Passive

Marvin was shot (by Vincent)

Agent optional in passive

Active

Vincent shot Marvin $\exists a.shot(a, VINCENT, MARVIN)$

Passive

Marvin was shot (by Vincent) $\exists a.shot(a, MARVIN)$ Agent optional in passive

[Parsons 1990]

Vincent shot Marvin $\exists a.shot(a, VINCENT, MARVIN)$

PassiveMarvin was shot (by Vincent) $\exists a.shot(a, MARVIN)$

Active

Agent optional in passive

Can we represent such distinctions without requiring different arity predicates?

- Separation between semantic and syntactic roles
- Thematic roles captured by conjunctive predicates

Vincent shot Marvin

 $\exists a.shot(a, VINCENT, MARVIN)$

 $\exists a.shot(a) \land agent(a, VINCENT) \land patient(a, MARVIN)$

Vincent shot Marvin in the car accidentally $\exists a.shot(a) \land agent(a, VINCENT) \land$ $patient(a, MARVIN) \land in(a, \iota x.car(x)) \land \neg intentional(a)$

- Decomposition to conjunctive modifiers makes incremental interpretation simpler
- Shallow semantic structures: no need to modify deeply embedded variables

 $\exists a.shot(a) \land agent(a, VINCENT) \land patient(a, MARVIN) \land in(a, \iota x.car(x)) \land \neg intentional(a)$

Without events:

 $shot(VINCENT, MARVIN, \iota x.car(x), INTENTIONAL)$

- Decomposition to conjunctive modifiers makes incremental interpretation simpler
- Shallow semantic structures: no need to modify deeply embedded variables

move forward past the sofa to the chair

move	forward	past the sofa	to the chair
Туре	Direction	Intermediate position	Final position

- Imperatives define actions to be executed
- Constrained by adverbials
- Similar to how nouns are defined

- Imperatives are sets of actions
- Just like nouns: functions from events to truth

$$f: ev \to t$$

Given a set, what do we actually execute?

Given a set, what do we actually execute?

- Need to select a single action and execute it
- Reasonable solution: select simplest/shortest

- Imperatives are sets of events
- Events are sequences of identical actions

move

```
\lambda a.move(a)
```


- Imperatives are sets of events
- Events are sequences of identical actions

move

```
\lambda a.move(a)
```


Disambiguate by preferring shorter sequences

Events can be modified by adverbials

move twice

 $\lambda a.move(a) \wedge len(a,2)$

Events can be modified by adverbials

go to the chair

 $\lambda a.move(a) \wedge$

 $to(a, \iota x.chair(x))$

Treatment of events and their adverbials is similar to nouns and prepositional phrases

Dynamic Models

Implicit Actions

World model changes during execution

move until you reach the chair $\lambda a.move(a) \wedge$

 $post(a, intersect(\iota x.chair(x), you))$

World model changes during execution

move until you reach the chair

 $\lambda a.move(a) \wedge$

 $post(a, intersect(\iota x.chair(x), you))$

World model changes during execution

move until you reach the chair

 $\lambda a.move(a) \land$ $post(a, intersect(\iota x.chair(x), you))$

Update model to reflect state change

Update model to reflect state change

Implicit Actions

Consider action assignments with prefixed implicit actions

at the chair, turn left

 $\lambda a.turn(a) \wedge dir(a, left) \wedge$ $pre(a, intersect(\iota x.chair(x), you))$

Implicit Actions

Consider action assignments with prefixed implicit actions

at the chair, turn left

 $\begin{array}{l} \lambda a.turn(a) \wedge dir(a, left) \wedge \\ pre(a, intersect(\iota x.chair(x), you)) \end{array}$

Implicit Actions

Consider action assignments with prefixed implicit actions

at the chair, turn left

 $\begin{array}{l} \lambda a.turn(a) \wedge dir(a, left) \wedge \\ pre(a, intersect(\iota x.chair(x), you)) \end{array}$

Implicit actions

Experiments

Instruction:

at the chair, move forward three steps past the sofa Demonstration:

- Situated learning with joint inference
- Two forms of validation
- Template-based $GENLEX(x, \mathcal{V}; \Lambda, \theta)$

Results SAIL Corpus - Cross Validation

More Reading about Modeling

Type-Logical Semantics by Bob Carpenter

[Carpenter 1997]

Today

Parsing	Combinatory Categorial Grammars	
Learning	Unified learning algorithm	
Modeling	Best practices for semantics design	

Looking Forward

Looking Forward: Scale

Goal

Answer any question posed to large, community authored databases

Challenges

- Large domains
- Scalable algorithms
- Unseen words and concepts

What are the neighborhoods in New York City? λx . neighborhoods(new_york, x)

How many countries use the rupee? count(x). $countries_used(rupee, x)$

How many Peabody Award winners are there?

 $\texttt{count}(x) \mathrel{.} \exists y \mathrel{.} \texttt{award_honor}(y) \mathrel{\wedge}$

 $award_winner(y, x) \land$ $award(y, peabody_award)$

See

Cai and Yates 2013a, 2013b

Looking Forward: Code

Text Description	Regular Expression
three letter word starting with 'X'	$bX[A-Za-z]{2}\b$

the input

an integer N

test cases

2 1

Y

5

YWYWW

WWYYY

the next N lines

N characters

Looking Forward: Context

Goal

Understanding how sentence meaning varies with context

Challenges

- Data
- Linguistics: co-ref, ellipsis, etc.

See

Miller et al. 1996; Zettlemoyer and Collins 2009; Artzi and Zettlemoyer 2013 Example #1:

- (a) show me the flights from boston to philly $\lambda x.flight(x) \wedge from(x, bos) \wedge to(x, phi)$
- (b) show me the ones that leave in the morning $\lambda x.flight(x) \wedge from(x, bos) \wedge to(x, phi)$ $\wedge during(x, morning)$
- (c) what kind of plane is used on these flights $\lambda y. \exists x. flight(x) \land from(x, bos) \land to(x, phi)$ $\land during(x, morning) \land aircraft(x) = y$

Example #2:

- (a) show me flights from milwaukee to orlando $\lambda x.flight(x) \wedge from(x,mil) \wedge to(x,orl)$
- (b) cheapest $argmin(\lambda x.flight(x) \land from(x,mil) \land to(x,orl), \lambda y.fare(y))$
- (c) departing wednesday after 5 o'clock $argmin(\lambda x.flight(x) \land from(x,mil) \land to(x,orl) \land day(x,wed) \land depart(x) > 1700, \lambda y.fare(y))$

Looking Forward: Sensors

Goal

Integrate semantic parsing with rich sensing on real robots

Challenges

- Data
- Managing uncertainty
- Interactive learning

See

Matuszek et al. 2012; Tellex et al. 2013; Krishnamurthy and Kollar 2013 Move the pallet from the truck. Remove the pallet from the back of the truck. Offload the metal crate from the truck.

UW SPF

Open source semantic parsing framework

http://yoavartzi.com/spf

Semantic Parser Flexible High-Order Logic Representation Learning Algorithms

Includes ready-to-run examples

[Artzi and Zettlemoyer 2013a]

[fin]

Supplementary Material

Function Composition

$$\begin{split} g_{\langle \alpha,\beta\rangle} &= \lambda x.G \\ f_{\langle \beta,\gamma\rangle} &= \lambda y.F \\ g(A) &= (\lambda x.G)(A) = G[x := A] \\ f(g(A)) &= (\lambda y.F)(G[x := A]) = \\ F[y := G[x := A]] \\ \lambda x.f(g(A))[A := x] = \\ \lambda x.F[y := G[x := A]][A := x] = \\ \lambda x.F[y := G] = (f \cdot g)_{\langle \alpha,\gamma\rangle} \end{split}$$

References

- Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping semantic parsers from conversations. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.
- Artzi, Y. and Zettlemoyer, L. (2013a). UW SPF: The University of Washington Semantic Parsing Framework.
- Artzi, Y. and Zettlemoyer, L. (2013b). Weakly supervised learning of semantic parsers for mapping instructions to actions. *Transactions of the Association* for Computational Linguistics, 1(1):49–62.
- Branavan, S., Chen, H., Zettlemoyer, L., and Barzilay, R. (2009). Reinforcement learning for mapping instructions to actions. In Proceedings of the Joint Conference of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing.
- Branavan, S., Zettlemoyer, L., and Barzilay, R. (2010). Reading between the lines: learning to map high-level instructions to commands. In *Proceedings of* the Conference of the Association for Computational Linguistics.
- Cai, Q. and Yates, A. (2013a). Large-scale semantic parsing via schema matching and lexicon extension. In Proceedings of the Annual Meeting of the Association for Computational Linguistics.
- Cai, Q. and Yates, A. (2013b). Semantic parsing freebase: Towards open-domain semantic parsing. In Joint Conference on Lexical and Computational Semantics: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity.
- Carpenter, B. (1997). Type-Logical Semantics. The MIT Press.
- Chen, D. and Mooney, R. (2011). Learning to interpret natural language navigation instructions from observations. In *Proceedings of the National Conference* on Artificial Intelligence.
- Church, A. (1932). A set of postulates for the foundation of logic. *The Annals of Mathematics*, 33:346–366.
- Church, A. (1940). A formulation of the simple theory of types. *The journal of symbolic logic*, 5:56–68.
- Clark, S. and Curran, J. (2007). Wide-coverage efficient statistical parsing with CCG and log-linear models. *Computational Linguistics*, 33(4):493–552.
- Clarke, J., Goldwasser, D., Chang, M., and Roth, D. (2010). Driving semantic parsing from the world's response. In *Proceedings of the Conference on Computational Natural Language Learning.*

- Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing.*
- Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C., Rudnicky, A., and Shriberg, E. (1994). Expanding the scope of the ATIS task: The ATIS-3 corpus. In *Proceedings of the workshop on Human Language Technology*.
- Davidson, D. (1967). The logical form of action sentences. Essays on actions and events, pages 105–148.
- Davidson, D. (1969). The individuation of events. In Essays in honor of Carl G. Hempel, pages 216–234. Springer.
- Granroth-Wilding, M. and Steedman, M. (2012). Statistical parsing for harmonic analysis of jazz chord sequences. Ann Arbor, MI: MPublishing, University of Michigan Library.
- Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly context-sensitive grammar formalisms. Technical report.
- Kim, J. and Mooney, R. J. (2012). Unsupervised pcfg induction for grounded language learning with highly ambiguous supervision. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing.*
- Krishnamurthy, J. and Kollar, T. (2013). Jointly learning to parse and perceive: Connecting natural language to the physical world. Transactions of the Association for Computational Linguistics, 1(1):193–206.
- Kushman, N. and Barzilay, R. (2013). Using semantic unification to generate regular expressions from natural language. In Proceedings of the Human Language Technology Conference of the North American Association for Computational Linguistics.
- Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing probabilistic CCG grammars from logical form with higher-order unification. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing.*
- Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2011). Lexical Generalization in CCG Grammar Induction for Semantic Parsing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.
- Lei, T., Long, F., Barzilay, R., and Rinard, M. (2013). From natural language specifications to program input parsers. In *Proceedings of the the annual meeting of the Association for Computational Linguistics*.

- Liang, P., Bouchard-Côté, A., Klein, D., and Taskar, B. (2006). An end-toend discriminative approach to machine translation. In *Proceedings of the Conference of the Association of Computational Linguistics.*
- Liang, P., Jordan, M., and Klein, D. (2011). Learning dependency-based compositional semantics. In Proceedings of the Conference of the Association for Computational Linguistics.
- Maienborn, C., Von Heusinger, K., and Portner, P. (2011). Semantics: An international handbook of natural language and meaning. Walter de Gruyter.
- Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and Fox, D. (2012a). A joint model of language and perception for grounded attribute learning. *Proceedings of the International Conference on Machine Learning.*
- Matuszek, C., Herbst, E., Zettlemoyer, L. S., and Fox, D. (2012b). Learning to parse natural language commands to a robot control system. In *Proceedings* of the International Symposium on Experimental Robotics.
- Miller, S., Bobrow, R., Ingria, R., and Schwartz, R. (1994). Hidden understanding models of natural language. In *Proceedings of the Conference of the Association of Computational Linguistics.*
- Parsons, T. (1990). Events in the Semantics of English. The MIT Press.
- Scontras, G., Graff, P., and Goodman, N. D. (2012). Comparing pluralities. Cognition, 123(1):190–197.
- Singh-Miller, N. and Collins, M. (2007). Trigger-based language modeling using a loss-sensitive perceptron algorithm. In *IEEE International Conference on Acoustics, Speech and Signal Processing.*
- Steedman, M. (1996). Surface Structure and Interpretation. The MIT Press.
- Steedman, M. (2000). The Syntactic Process. The MIT Press.
- Steedman, M. (2011). Taking Scope. The MIT Press.
- Tang, L. R. and Mooney, R. J. (2001). Using multiple clause constructors in inductive logic programming for semantic parsing. In *Proceedings of the European Conference on Machine Learning*.
- Tellex, S., Kollar, T., Dickerson, S., Walter, M., Banerjee, A., Teller, S., and Roy, N. (2011). Understanding natural language commands for robotic navigation and mobile manipulation. In *Proceedings of the National Conference* on Artificial Intelligence.
- Tellex, S., Thaker, P., Joseph, J., and Roy, N. (2013). Learning perceptually grounded word meanings from unaligned parallel data. *Machine Learning*, pages 1–17.

- Wong, Y. and Mooney, R. (2006). Learning for semantic parsing with statistical machine translation. In *Proceedings of the Human Language Technology Conference of the North American Association for Computational Linguistics.*
- Zelle, J. and Mooney, R. (1996). Learning to parse database queries using inductive logic programming. In *Proceedings of the National Conference on Artificial Intelligence*.
- Zettlemoyer, L. and Collins, M. (2005). Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence.*
- Zettlemoyer, L. and Collins, M. (2007). Online learning of relaxed CCG grammars for parsing to logical form. In *Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.*
- Zettlemoyer, L. and Collins, M. (2009). Learning context-dependent mappings from sentences to logical form. In *Proceedings of the Joint Conference of the Association for Computational Linguistics and International Joint Conference on Natural Language Processing.*