Neural Shift-Reduce CCG Semantic Parsing

Dipendra Misra and Yoav Artzi
Department of Computer Science and Cornell Tech
Cornell University
New York, NY 10011
{dkm,yoav}@cs.cornell.edu

Abstract

We present a shift-reduce CCG semantic parser. Our parser uses a neural network architecture that balances model capacity and computational cost. We train by transferring a model from a computationally expensive log-linear CKY parser. Our learner addresses two challenges: selecting the best parse for learning when the CKY parser generates multiple correct trees, and learning from partial derivations when the CKY parser fails to parse. We evaluate on AMR parsing. Our parser performs comparably to the CKY parser, while doing significantly fewer operations. We also present results for greedy semantic parsing with a relatively small drop in performance.

1 Introduction

Shift-reduce parsing is a class of parsing methods that guarantees a linear number of operations in sentence length. This is a desired property for practical applications that require processing large amounts of text or real-time response. Recently, such techniques were used to build state-of-the-art syntactic parsers, and have demonstrated the effectiveness of deep neural architectures for decision making in linear-time dependency parsing (Chen and Manning, 2014; Dyer et al., 2015; Andor et al., 2016; Kiperwasser and Goldberg, 2016). In contrast, semantic parsing often relies on algorithms with polynomial number of operations, which results in slow parsing times unsuitable for practical applications. In this paper, we apply shift-reduce parsing to semantic parsing. Specifically, we study transferring a learned Combinatory Categorial Grammar (CCG; Steedman, 1996, 2000) from a dynamic-programming CKY model to a shift-reduce neural network architecture.

We focus on the feed-forward architecture of Chen and Manning (2014), where each parsing step is a multi-class classification problem. The state of the parser is represented using simple feature embeddings that are passed through a multilayer perceptron to select the next action. While simple, the capacity of this model to capture interactions between primitive features, instead of relying on sparse complex features, has led to new state-of-the-art performance (Andor et al., 2016). However, applying this architecture to semantic parsing presents learning and inference challenges.

In contrast to dependency parsing, semantic parsing corpora include sentences labeled with the system response or the target formal representation, and omit derivation information. CCG induction from such data relies on latent-variable techniques and requires careful initialization (e.g., Zettlemoyer and Collins, 2005, 2007). Such feature initialization does not directly transfer to a neural network architecture with dense embeddings, and the use of hidden layers further complicates learning by adding a large number of latent variables. We focus on data that includes sentence-representation pairs, and learn from a previously induced log-linear CKY parser. This drastically simplifies learning, and can be viewed as bootstrapping a fast parser from a slow one. While this dramatically narrows down the number of parses per sentence, it does not eliminate ambiguity. In our experiments, we often get multiple correct parses, up to 49K in some cases. We also observe that the CKY parser generates no parses for
a significant number of training sentences. Therefore, we propose an iterative algorithm that automatically selects the best parses for training at each iteration, and identifies partial derivations for best-effort learning, if no parses are available.

CCG parsing largely relies on two types of actions: using a lexicon to map words to their categories, and combining categories to acquire the categories of larger phrases. In most semantic parsing approaches, the number of operations is dominated by the large number of categories available for each word in the lexicon. For example, the lexicon in our experiments includes 1.7M entries, resulting in an average of 146, and up to 2K, applicable actions. Additionally, both operations and parser state have complex structures, for example including both syntactic and semantic information. Therefore, unlike in dependency parsing (Chen and Manning, 2014), we cannot treat action selection as multi-class classification, and must design an architecture that can accommodate a varying number of actions. We present a network architecture that considers a variable number of actions, and emphasizes low computational overhead per action, instead focusing computation on representing the parser state.

We evaluate on Abstract Meaning Representation (AMR; Banerjee et al., 2013) parsing. We demonstrate that our modeling and learning contributions are crucial to effectively commit to early decisions during parsing. Somewhat surprisingly, our shift-reduce parser provides equivalent performance to the CKY parser used to generate the training data, despite requiring significantly fewer operations, on average two orders of magnitude less. Similar to previous work, we use beam search, but also, for the first time, report greedy CCG semantic parsing results at a relatively modest 9% decrease in performance, while the source CKY parser with a beam of one demonstrates a 71% decrease. While we focus on semantic parsing, our learning approach makes no task-specific assumptions and has potential for learning efficient models for structured prediction from the output of more expensive ones.

2 Task and Background

Our goal is to learn a function that, given a sentence x, maps it to a formal representation of its meaning z with a linear number of operations in the length of x. We assume access to a training set of N examples $D = \{(x^{(i)}, z^{(i)})\}_{i=1}^{N}$, each containing a sentence $x^{(i)}$ and a logical form $z^{(i)}$. Since D does not contain complete derivations, we instead assume access to a CKY parser learned from the same data. We evaluate performance on a test set $\{(x^{(i)}, z^{(i)})\}_{i=1}^{M}$ of M sentences $x^{(i)}$ labeled with logical forms $z^{(i)}$. While we describe our approach in general terms, we apply our approach to AMR parsing and evaluate on a common benchmark (Section 6).

To map sentences to logical forms, we use CCG, a linguistically-motivated grammar formalism for modeling a wide-range of syntactic and semantic phenomena (Stevedman, 1996, 2000). A CCG is defined by a lexicon Λ and sets of unary \mathcal{R}_{a} and binary \mathcal{R}_{b} rules. In CCG parse trees, each node is a category. Figure 1 shows a CCG tree for the sentence Some old networks remain inoperable. For example, $S\langle N_{[pl]} / \{N_{[pl]} / N_{[pl]}\} \rangle : \lambda f. \lambda x. f(\lambda r. \text{remain-01}(r) \land \text{ARG1}(r, x)) \land \text{ARG3}(r, \lambda x. \text{pl}(p) \land \text{polarity}(p, \neg) \land \text{domain}(p, \lambda x. \text{op-01}(o)))$ indicates that two arguments are expected: first an adjective $N_{[pl]} / N_{[pl]}$ and then a plural noun phrase $N_{[pl]}$. The final syntactic type will be S. The forward slash $/$ indicates the argument is expected on the right, and the backward slash \backslash indicates it is expected on the left. The syntactic attribute pl is used to express the plural.

Figure 1: Example CCG tree with five lexical entries, three forward applications ($>$) and a backward application ($<$).
ity constraint of the verb. The simply-typed lambda calculus logical form in the category represents semantic meaning. The typing system includes atomic types (e.g., entity e, truth value t) and functional types (e.g., $\langle e, t \rangle$ is the type of a function from e to t). In the example category above, the expression on the right of the colon is a $\langle \langle e, t \rangle, \langle e, t \rangle, \langle e, e, t \rangle \rangle$-typed function expecting first an adjectival modifier and then an ARG1 modifier. The conjunction \wedge specifies the roles of remain-01. The lexicon Λ maps words to CCG categories. For example, the lexical entry remain $\vdash s \notin NP[p]/(N[p]/N[p]) : \lambda f.\lambda x. f(\lambda r.\text{remain-01}(r) \wedge \text{ARG1}(r, x))$ pairs the example category with remain. The parse tree in the figure includes four binary operations: three forward applications ($>$) and a backward application ($<$).

3 Neural Shift Reduce Semantic Parsing

Given a sentence $x = \langle x_1, \ldots, x_m \rangle$ with m tokens x_i and a CCG lexicon Λ, let $\text{GEN}(x; \Lambda)$ be a function that generates CCG parse trees. We design GEN as a shift-reduce parser, and score decisions using embeddings of parser states and candidate actions.

3.1 Shift-Reduce Parsing for CCG

Shift-reduce parsers perform a single pass of the sentence from left to right to construct a parse tree. The parser configuration2 is defined with a stack and a buffer. The stack contains partial parse trees, and the buffer the remainder of the sentence to be processed. Formally, a parser configuration c is a tuple $\langle \sigma, \beta \rangle$, where the stack σ is a list of CCG trees $[s_1, \ldots, s_1]$, and the buffer β is a list of tokens from x to be processed $[x_1, \ldots, x_m]$.3 For example, the top-left of Figure 2 shows a parsing configuration with two partial trees on the stack and two words on the buffer (remain and inoperable).

Parsing starts with the configuration $\langle [], [x_1 \cdots x_m] \rangle$, where the stack is empty and the buffer is initialized with x. In each parsing step, the parser either consumes a word from the buffer and pushes a new tree to the stack, or applies a parsing rule to the trees at the top of the stack. For simplicity, we apply CCG rules to trees, where a rule is applied to the root categories of the argument trees to create a new tree with the arguments as children. We treat lexical entries as trees with a single node. There are three types of actions:4

$$\text{SHIFT}(l, \langle \sigma, x_i, \cdots, x_j \rangle \beta) = \langle \sigma, g, \beta \rangle$$

$$\text{BINARY}(b, \langle \sigma | s_2 | s_1, \beta \rangle) = \langle \sigma | b(s_2, s_1), \beta \rangle$$

$$\text{UNARY}(u, \langle \sigma | s_1, \beta \rangle) = \langle \sigma | u(s_1), \beta \rangle .$$

Where $b \in R_b$ is a binary rule, $u \in R_u$ is a unary rule, and l is a lexical entry $x_i, \ldots, x_j \vdash g$ for the tokens x_i, \ldots, x_j and CCG category g. SHIFT creates a tree given a lexical entry for the words at the top of the buffer, BINARY applies a binary rule to the two trees at the head of the stack, and UNARY applies a unary rule to the tree at head of the stack. A configuration is terminal when no action is applicable.

Given a sentence x, a derivation is a sequence of action-configuration pairs $\langle \langle c_1, a_1 \rangle, \ldots, (c_k, a_k) \rangle$, where action a_i is applied to configuration c_i to generate configuration c_{i+1}. The result configuration c_{k+1} is of the form $\langle [s], [] \rangle$, where s represents a complete parse tree, and the logical form z at the root category represents the meaning of the complete sentence. Following previous work with CKY parsing (Zettlemoyer and Collins, 2005), we disallow consecutive unary actions. We denote the set of actions allowed from configuration c as $A(c)$.

3.2 Model

Our goal is to balance computation and model capacity. To recover a rich representation of the configuration, we use a multilayer perceptron (MLP) to create expressive interactions between a small number of simple features. However, since we consider many possible actions in each step, computing activations for multiple hidden layers for each action is prohibitively expensive. Instead, we opt for a computationally-inexpensive action representation computed by concatenating feature embeddings. Figure 2 illustrates our architecture.

Given a configuration c, the probability of an action a is:

$$p(a \mid c) = \frac{\exp \{\phi(a, c)W_bF(\xi(c))\}}{\sum_{a' \in A(c)} \exp \{\phi(a', c)W_bF(\xi(c))\}} ,$$

2We use the terms parser configuration and parser state interchangeably.

3The head of the stack σ is the right-most entry, and the head of the buffer β is the left-most entry.

4We follow the standard notation of $L|x$ indicating a list with all the entries from L and x as the right-most element.
Some old networks remain inoperable. Embeddings of the same feature type are colored the same. The configuration embedding \(\xi(c) \) is a concatenation of syntax embeddings (green) and the logical form embedding (blue; computed by \(\psi \)) for the top entries in the stack. We then pass \(\xi(c) \) through the MLP \(\mathcal{F} \). Given the actions \(\mathcal{A}(c) \), we compute the embeddings \(\phi(a_i, c) \), \(i = 1 \ldots |\mathcal{A}(c)| \). The actions and MLP representation are combined with a bilinear softmax layer. The number of concatenated vectors and stack elements used is for illustration. The details are described in Section 3.2.

where \(\phi(a, c) \) is the action embedding, \(\xi(c) \) is the configuration embedding, and \(\mathcal{F} \) is an MLP. \(W_b \) is a bilinear transformation matrix. Given a sentence \(x \) and a sequence of action-configuration pairs \(\langle c_1, a_1 \rangle, \ldots, \langle c_k, a_k \rangle \), the probability of a CCG tree \(y \) is

\[
p(y | x) = \prod_{i=1}^{k} p(a_i | c_i).\]

The probability of a logical form \(z \) is then

\[
p(z | x) = \sum_{y \in \mathcal{Y}(z)} p(y | x),\]

where \(\mathcal{Y}(z) \) is the set of CCG trees with the logical form \(z \) at the root.

MLP Architecture \(\mathcal{F} \) We use a MLP with two hidden layers parameterized by \(\{W_1, W_2, b_1, b_2\} \) with a ReLu non-linearity (Glorot et al., 2011). Since the output of \(\mathcal{F} \) influences the dimensionality of \(W_b \), we add a linear layer parameterized by \(W_3 \) and \(b_3 \) to reduce the dimensionality of the configuration, thereby reducing the dimensionality of \(W_b \).

Configuration Embedding \(\xi(c) \) Given a configuration \(c = \langle s_1 \cdots s_l, x_1 \cdots x_m \rangle \), the input to \(\mathcal{F} \) is a concatenation of syntactic and semantic embeddings, as illustrated in Figure 2. We concatenate embeddings from the top three trees in the stack \(s_1, s_2, s_3 \). When a feature is not present, for example when the stack or buffer are too small, we use a tunable null embedding.

Given a tree on the stack \(s_j \), we define two syntactic features: attribute set and stripped syntax. The attribute feature is created by extracting all the syntactic attributes of the root category of \(s_j \). The stripped syntax feature is the syntax of the root category without the syntactic attributes. For example, in Figure 2, we embed the stripped category \(N \) and attribute \(pl \) for \(s_1 \), and \(NP/N \) and \(x \) for \(s_2 \). The attributes are separated from the syntax to reduce sparsity, and the interaction between them is computed by \(\mathcal{F} \). The sparse features are converted to dense embeddings using a lookup table and concatenated. In addition, we also embed the logical form at the root of \(s_j \). Figure 3 illustrates the recursive embedding function \(\psi \). Using a recursive function to embed logical forms is computationally intensive. Due to strong correlation between sentence length and logical form complexity, this computation increases

3 For simplicity, the figure shows only the top two trees.

4 The algorithm is provided in the supplementary material.
the two approaches.⁸ We factorize the exponent in our objective into action \(\phi(a, c) \) and configuration \(\mathcal{F}(\xi(c)) \) embeddings. While every parse step involves a single configuration, the number of actions is significantly higher. With the goal of minimizing the amount of computation per action, we use simple concatenation only for action embedding. However, this requires retaining sparse conjunctive action features since they are never combined through hidden layers similar to configuration features.

3.3 Inference

To compute the set of parse trees \(\text{GEN}(x; \Lambda) \), we perform beam search to recover the top-\(k \) parses. The beam contains configurations. At each step, we expand all configurations with all actions, and keep only the top-\(k \) new configurations. To promote diversity in the beam, given two configurations with the same signature, we keep only the highest scoring one. The signature includes the previous configuration in the derivation, the state of the buffer, and the root categories of all stack elements. Since all features are computed from these elements, this optimization does not affect the max-scoring tree. Additionally, since words are assigned structured categories, a key problem is unknown words or word uses. Following Zettlemoyer and Collins (2007), we use a two-pass parsing strategy, and allow skipping words controlled by the term \(\gamma \) in the second pass. The term \(\gamma \) is added to the exponent of the action probability when words are skipped. See the supplementary material for the exact form.

Complexity Analysis The shift-reduce parser processes the sentence from left to right with a linear number of operations in sentence length. We define an operation as applying an action to a configuration. Formally, the number of operations for a sentence of length \(m \) is bounded by \(O(4mk(|\lambda| + |\mathcal{R}_b| + |\mathcal{R}_u|)) \), where \(|\lambda|\) is the number of lexical entries per token, \(k \) is the beam size, \(\mathcal{R}_b \) is the set of binary rules, and \(\mathcal{R}_u \) the set of unary rules. In comparison, the number of operations for the CKY parser, where an operation is applying a rule to a single cell or two adjacent cells in the chart, is bounded by \(O(m|\lambda| + m^3k^2|\mathcal{R}_b| + m^2b|\mathcal{R}_u|) \). For sentence

⁸We experimented with an LSTM parser similar to Dyer et al. (2015). However, performance was not competitive. This direction remains an important avenue for future work.

⁷See the supplementary material for feature details.
length 25, the mean in our experiments, the shift-reduce parser performs 100 time fewer operations. See the supplementary material for the full analysis.

4 Learning

We assume access to a training set of N examples $\mathcal{D} = \{ (x^{(i)}, z^{(i)}) \}_{i=1}^N$, each containing a sentence $x^{(i)}$ and a logical form $z^{(i)}$. The data does not include information about the lexical entries and CCG parsing operations required to construct the correct derivations. We bootstrap this information from a learned parser. In our experiments we use a learned dynamic-programming CKY parser. We transfer the lexicon Λ directly from the input parser, and focus on estimating the parameters θ, which include feature embeddings, hidden layer matrices, and bias terms. The main challenge is learning from the noisy supervision provided by the input parser. In our experiments, the CKY parser fails to correctly parse 40% of the training data, and returns on average 147 max-scoring correct derivations for the rest. We propose an iterative algorithm that treats the choice between multiple parse trees as latent, and effectively learns from partial analysis when no correct derivation is available.

The learning algorithm (Algorithm 1) starts by processing the data using the CKY parser (lines 3-4). For each sentence $x^{(i)}$, we collect the max-scoring CCG trees with $z^{(i)}$ at the root. The CKY parser often contains many correct parses with identical scores, up to 49K parses per sentence. Therefore, we randomly sample and keep up to 1K trees. This process is done once, and the algorithm then runs for T iterations. At each iteration, given the sets of parses from the CKY parser \mathcal{Y}, we select the max-probability parse according to our current parameters θ (line 10) and add all the shift-reduce decisions from this parse to \mathcal{D}_A (line 12), the action data set that we use to estimate the parameters. We approximate the $\arg \max$ with beam search using an oracle computed from the CKY parses.\(^9\) CONFGEN aggregates the configuration-action pairs from the highest scoring derivation. Parse selection depends on θ and this choice will gradually converge as the parameters improve. The action data set is used to compute the ℓ_2-regularized negative log-likelihood objective \mathcal{J} (line 16) and back-propagate the error to compute the gradient (line 17). We use AdaGrad (Duchi et al., 2011) to update the parameters θ (line 18).

4.1 Learning from Partial Derivations

The input parser often fails to generate correct parses. In our experiments, this occurs for 40% of the training data. In such cases, we can obtain a forest of partial tree parses \mathcal{Y}_p. Each partial tree $y \in \mathcal{Y}_p$ corresponds to a span of tokens in the sentence and is scored by the input parser. In practice, the spans are often overlapping. Our goal is to generate high quality configuration-action pairs (c, a) from \mathcal{Y}_p. These pairs will be added to \mathcal{D}_A for training. While extracting actions a is straightforward, generating configurations c requires reconstructing the stack σ from an incomplete forest of partial trees \mathcal{Y}_p. Figure 4 illustrates our proposed process. Let $\text{CKYScore}(y)$ be the CKY score of the partial tree y. To reconstruct σ, we select non-overlapping par-

\(^{9}\)Our oracle is non-deterministic and incomplete (Goldberg and Nivre, 2013).

Algorithm 1 The learning algorithm.

Input: Training set $\mathcal{D} = \{ (x^{(i)}, z^{(i)}) \}_{i=1}^N$, learning rate μ, regularization parameter ℓ_2 and number of iterations T.

Definitions: $\text{GENMAXCKY}(x, z)$ returns the set of max-scoring CKY parses for x with z at the root. $\text{SCORE}(y, \theta)$ scores a tree y according to the parameters θ (Section 3.2). $\text{CONFGEN}(x, y)$ is the sequence of action-configuration pairs that generates y given x (Section 3.1). $\text{BP}(\Delta, \mathcal{J})$ takes the objective \mathcal{J} and back-propagates the error $\nabla \mathcal{J}$ through the computation graph for the sample used to compute the objective. $\text{ADAGRAD}(\Delta)$ applies a per-feature learning rate to the gradient Δ (Duchi et al., 2011).

Output: Model parameters θ.

1. » Get trees from CKY parser.
2. $\mathcal{Y} \leftarrow \emptyset$
3. for $i = 1$ to N do
4. $\mathcal{Y}[i] = \text{GENMAXCKY}(x^{(i)}, z^{(i)})$
5. for $t = 1$ to T do
6. » Pick max-scoring trees and create action dataset.
7. $\mathcal{D}_A = \emptyset$
8. for $i = 1$ to N do
9. if $\mathcal{Y}[i] \neq \emptyset$ then
10. $\mathcal{A} \leftarrow \text{CONFGEN}(x^{(i)})$
11. $\mathcal{A}_A \leftarrow \arg \max_{a \in \mathcal{Y}[i]} \text{SCORE}(y, \theta)$
12. for $(c, a) \in \mathcal{A}_A$ do
13. $\mathcal{D}_A \leftarrow \mathcal{D}_A \cup \{(c, a)\}$
14. » Back-propagate the loss through the network.
15. for $(c, a) \in \mathcal{D}_A$ do
16. $\mathcal{J} \leftarrow - \log p(a \mid c) + \frac{\ell_2}{2} \theta^T \theta$
17. $\Delta \leftarrow \text{BP}(\nabla \mathcal{J})$
18. $\theta \leftarrow \theta - \mu \text{ADAGRAD}(\Delta)$
19. return θ
Figure 4: Partial derivation selection for learning (Section 4.1). The dotted triangles represent skipped spans in the sentence, where no high quality partial trees were found. Dark triangles represent the selected partial trees. We identify two contiguous spans, 1-6 and 11-14, and generate two synthetic sentences for training: the tokens are treated as complete sentences and actions and stack state are generated from the partial trees.

Figure 4: Partial derivation selection for learning (Section 4.1). The dotted triangles represent skipped spans in the sentence, where no high quality partial trees were found. Dark triangles represent the selected partial trees. We identify two contiguous spans, 1-6 and 11-14, and generate two synthetic sentences for training: the tokens are treated as complete sentences and actions and stack state are generated from the partial trees.

partial trees Y that correspond to the entire sentence by solving $\arg\max_{Y \subseteq \mathcal{Y}_p} \text{CKYScore}(y)$ under two constraints: (a) no two trees from Y correspond to overlapping tokens, and (b) for each token in x, there exists $y \in Y$ that corresponds to it. We solve the $\arg\max$ using dynamic programming. The generated set Y approximates an intermediate state of a shift-reduce derivation. However, \mathcal{Y}_p often does not contain high quality partial derivation for all spans. To skip low quality partial trees and spans that have no trees, we generate empty trees y_e for every span, where CKYScore(y_e) = 0, and add them to \mathcal{Y}_p. If the set of selected partial trees Y includes empty trees, we divide the sentence to separate examples and ignore these parts. This results in partial and approximate stack reconstruction. Finally, since \mathcal{Y}_p is noisy, we prune from it partial trees with a root that does not match the syntactic type for this span from an automatically generated CCGBank (Hockenmaier and Steedman, 2007) syntactic parse.

Our complete learning algorithm alternates between epochs of learning with complete parse trees and learning with partial derivations. In epochs where we use partial derivations, we use a modified version of Algorithm 1, where lines 9-10 are updated to use the above process.

5 Related work

Our approach is inspired by recent results in dependency parsing, specifically by the architecture of Chen and Manning (2014), which was further developed by Weiss et al. (2015) and Andor et al. (2016). Dyer et al. (2015) proposed to encode the parser state using an LSTM recurrent architecture, which has been shown generalize well between languages (Ballesteros et al., 2015; Anmar et al., 2016). Our network architecture combines ideas from the two threads: we use feature embeddings and a simple MLP to score actions, while our probability distribution is similar to the LSTM parser.

The majority of CCG approaches for semantic parsing rely on CKY parsing with beam search (e.g., Zettlemoyer and Collins, 2005, 2007; Kwiatkowski et al., 2010, 2011; Artzi and Zettlemoyer, 2011, 2013; Artzi et al., 2014; Matuszek et al., 2012; Kushman and Barzilay, 2013). Semantic parsing with other formalisms also often relied on CKY-style algorithms (e.g., Liang et al., 2009; Kim and Mooney, 2012). With a similar goal to ours, Berant and Liang (2015) designed an agenda-based parser. In contrast, we focus on a method with linear number of operations guarantee.

6 Experimental Setup

Task and Data We evaluate on AMR parsing with CCG. AMR is a general-purpose meaning representation, which has been used in multiple tasks (Pan et al., 2015; Liu et al., 2015; Sawai et al., 2015; Garg et al., 2016). We use the newswire portion of AMR Bank 1.0 release (LDC2014T12), which displays some of the fundamental challenges in semantic parsing, including long newswire sentences with a broad array of syntactic and semantic phenomena. We follow the standard train/dev/test split of 6603/826/823 sentences. We evaluate with the SMATCH metric (Cai and Knight, 2013). Our parser is incorporated into the two-stage approach of Artzi et al. (2015). The approach includes a bi-directional and deterministic conversion between AMR and lambda calculus. Distant references, for example such as introduced by pronouns, are represented using Skolem IDs, globally-scoped existentially-quantified unique IDs. A derivation includes a CCG tree, which maps the sentence to an underspecified logical form, and a constant mapping, which maps underspecified elements to their fully specified form. The key to the approach is the underspecified logical forms, where distant references and most relations are not fully specified, but instead represented
as placeholders. Figure 5 shows an example AMR, its lambda calculus conversion, and its underspecified logical form. (Artzi et al., 2015) use a CKY parser to identify the best CCG tree, and a factor graph for the second stage. We integrate our shift-reduce parser into the two-stage setup by replacing the CKY parser. We use the same CCG configuration and integrate our parser into the join probabilistic model. Formally, given a sentence x, the probability of an AMR logical form z is

$$p(z \mid x) = \sum_u p(z \mid u, x) \sum_{y \in \mathcal{Y}(u)} p(y \mid x),$$

where u is an underspecified logical form, $\mathcal{Y}(u)$ is the set of CCG trees with u at the root. We use our shift-reduce parser to compute $p(y \mid x)$ and use the pre-trained model from Artzi et al. (2015) for $p(z \mid u, x)$. Following Artzi et al. (2015), we disallow configurations that will not result in a valid AMR, and design a heuristic post-processing technique to recover a single logical form from terminal configurations that include multiple disconnected partial trees on the stack. We use the recovery technique when no complete parses are available.

Tools We evaluate with the SMATCH metric (Cai and Knight, 2013). We use EasyCCG (Lewis and Steedman, 2014) for CCGBank categories (Section 4.1). We implement our system using Cornell SPF (Artzi, 2016), and the deeplearning4j library. The setup of Artzi et al. (2015) also includes the Illinois NER (Ratinov and Roth, 2009) and Stanford CoreNLP POS Tagger (Manning et al., 2014).

Parameters and Initialization We minimize our loss on a held-out 10% of the training data to tune our parameters, and train the final model on the full data. We set the number of epochs $T = 3$, regularization coefficient $\ell_2 = 10^{-6}$, learning rate $\mu = 0.05$, skipping term $\gamma = 1.0$. We set the dimensionality of feature embeddings based on the vocabulary size of the feature type. The exact dimensions are listed in the supplementary material. We use 65 ReLU units for h_1 and h_2, and 50 units for h_3. We initialize θ with the initialization scheme of Glorot and Bengio (2010), except the bias term for ReLu layers, which we initialize to 0.1 to increase the number of active units on initialization. During test, we use the vector 0 as embedding for unseen features. We use a beam of 512 for testing and 2 for CONFGEN (Section 4).

Model Ensemble For our final results, we marginalize the output over three models \mathcal{M} using

$$p(z \mid x, \theta, \Lambda) = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} p(z \mid m, x, \theta, \Lambda).$$

7 Results

Table 1 shows development results. We trained each model three times and report the best performance. We observed a variance of roughly 0.5 in these runs. We experimented with different features for configuration embedding and with removing learning with partial derivations (Section 4.1). The com-

Table 1: Development SMATCH results.

<table>
<thead>
<tr>
<th>Parser</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKY (Artzi et al., 2015)</td>
<td>67.2</td>
<td>65.1</td>
<td>66.1</td>
</tr>
<tr>
<td>Greedy CKY</td>
<td>64.1</td>
<td>11.29</td>
<td>19.19</td>
</tr>
<tr>
<td>SR (complete model)</td>
<td>67.0</td>
<td>63.4</td>
<td>65.3</td>
</tr>
<tr>
<td>w/o semantic embedding</td>
<td>67.1</td>
<td>63.3</td>
<td>65.1</td>
</tr>
<tr>
<td>w/o partial derivation learning</td>
<td>66.0</td>
<td>62.2</td>
<td>64.0</td>
</tr>
<tr>
<td>Ensemble SR (syntax)</td>
<td>68.2</td>
<td>64.1</td>
<td>66.0</td>
</tr>
<tr>
<td>Ensemble SR (syntax, semantics)</td>
<td>68.1</td>
<td>63.9</td>
<td>65.9</td>
</tr>
<tr>
<td>SR with CKY model</td>
<td>52.5</td>
<td>49.36</td>
<td>50.88</td>
</tr>
</tbody>
</table>

Table 2: Test SMATCH results.\(^1\)

<table>
<thead>
<tr>
<th>Parser</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMR(^1)</td>
<td>67.8</td>
<td>59.2</td>
<td>63.2</td>
</tr>
<tr>
<td>CKY (Artzi et al., 2015)</td>
<td>66.8</td>
<td>65.7</td>
<td>66.3</td>
</tr>
<tr>
<td>Shift Reduce</td>
<td>68.1</td>
<td>64.2</td>
<td>66.1</td>
</tr>
<tr>
<td>Wang et al. (2015a)(^1)</td>
<td>72.0</td>
<td>67.0</td>
<td>70.0</td>
</tr>
</tbody>
</table>

\(^1\)[http://deeplearning4j.org/]

Figure 5: AMR for the sentence the lawyer concluded his arguments late. In Artzi et al. (2015), The AMR (left) is deterministically converted to the logical form (right). The underspecified logical form is the result of the first stage, CCG parsing, and contains two placeholders (bolded): ID for a reference, and REL for a relation. To generate the final logical form, the second stage resolves ID to the identifier of the lawyer (2), and REL to the relation time. We focus on a model for the first stage and use an existing model for the second stage.
The complete model gives the best single-model performance of 65.3 F1 SMATCH, and we observe the benefits for semantic embeddings and learning from partial derivations. Using partial derivations allowed us to learn 370K more features, 22% of observed embeddings. We also evaluate ensemble performance. We observe an overall improvement in performance. However, with multiple models, the benefit of using semantic embeddings vanishes. This result is encouraging since semantic embeddings can be expensive to compute if the logical form grows with sentence length. We also provide results for running a shift-reduce log-linear parser $p(a \mid c) \propto \exp\{w^T\phi_{CKY}(a,c)\}$ using the input CKY model. We observe a significant drop in performance, which demonstrates the overall benefit of our architecture.

Figure 6 shows the development performance of our best performing ensemble model for different beam sizes. The performance decays slowly with decreasing beam size. Surprisingly, our greedy parser achieves 59.77 SMATCH F1, while the CKY parser with a beam of 1 achieves only 19.2 SMATCH F1 (Table 1). This allows our parser to trade-off a modest drop in accuracy for a significant improvement in runtime.

Table 2 shows the test results using our best performing model (ensemble with syntax features). We compare our approach to the CKY parser of Artzi et al. (2015) and JAMR (Flanigan et al., 2014).11,12 We also list the results of Wang et al. (2015b), who demonstrated the benefit of auxiliary analyzers and is the current state of the art.13 Our performance is comparable to the CKY parser of (Artzi et al., 2015), which we use to bootstrap our system. This demonstrates the ability of our parser to match the performance of a dynamic-programming parser, which executes significantly more operations per sentence.

Finally, Figure 7 shows our parser runtime relative to sentence length. In this analysis, we focus on runtime, and therefore use a single model.

We compare two versions of our system, including and excluding semantic embeddings, and the CKY parser of Artzi et al. (2015). We run both parsers with 16 cores and 122GB memory. The shift-reduce parser is three times faster on average, and up to ten times faster on long sentences. Since our parser is currently using CPUs, future work focused on GPU porting is likely to see further improvements.

8 Conclusion

Our parser design emphasizes a balance between model capacity and the ability to combine atomic features against the computational cost of scoring actions. We also design a learning algorithm to transfer learned models and learn neural network models from ambiguous and partial supervision. Our model shares many commonalities with transition-based dependency parsers. This makes it a good starting point to study the effectiveness of other dependency parsing techniques for semantic parsing, for example global normalization (Andor et al., 2016) and bidirectional LSTM feature representations (Kiperwasser and Goldberg, 2016).

Acknowledgments

This research was supported in part by gifts from Google and Amazon. The authors thank Kenton Lee for technical advice, and Adam Gibson and Alex Black of Skymind for help with Deeplearning4j. We also thank Tom Kwiatkowski, Arzoo Katiyar, Tianze Shi, Vlad Niculae, the Cornell NLP Group, and the reviewers for helpful advice.
References

