Reinforcement Learning for Mapping Instructions to Actions
with Reward Learning

Dipendra Misra
Dept. of Computer Science and Cornell Tech
Cornell University
New York, NY 10044
dkm@cs.cornell.edu

Introduction

Natural language is an efficient medium for non-expert users
to specify tasks for robotic agents. To effectively map nat-
ural language instructions to actions, a robotic agent must
solve natural language, sensing, and planning problems. For
example, consider the Blocks environment and instructions
in Figure 1 (Bisk, Yuret, and Marcu 2016). The agent ob-
serves the environment as an RGB image using a camera
sensor. Given the RGB input, the agent must recognize the
blocks and their layout. To understand the instruction, the
agent must identify the block to move (Toyota block) and the
destination (just right of the SRI block). This requires solv-
ing semantic and grounding problems. For example, con-
sider the topmost instruction in the figure. The agent needs
to identify and ground the phrase Toyota block referring to
the block to move. It must resolve and ground the phrase SR/
block as a reference position, which is then modified by the
spatial meaning recovered from the same row as or first open
space to the right of, to identify the goal position. Finally,
the agent needs to generate actions, for example moving the
Toyota block around obstructing blocks.

Previous work assumed a symbolic environment repre-
sentation (Chen and Mooney 2011; Artzi and Zettlemoyer
2013; Artzi, Das, and Petrov 2014; Misra et al. 2015;
Mei, Bansal, and Walter 2016), or combined separately
trained models to solve the different problems (Matuszek,
Fox, and Koscher 2010; Tellex et al. 2011). We recently pro-
posed a single-model approach for mapping instructions and
visual observations to actions (Misra, Langford, and Artzi
2017). Our approach does not require intermediate represen-
tations, planning procedures, or training different models.
Training relies on a reinforcement learning method approx-
imated in a contextual bandit setting (Langford and Zhang
2007). During learning, the reward function requires access
to the world state to evaluate task progress and completion.
While this can be achieved by instrumenting the training en-
vironment (Levine et al. 2016), this is not always practical.

We address this limitation by learning a distance-based
reward function (Popov et al. 2017) using distance learning,
an efficient method for learning a distance function (Wein-
berger, Blitzer, and Saul 2006). Learning relies on simple

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yoav Artzi
Dept. of Computer Science and Cornell Tech
Cornell University
New York, NY 10044
yoav@cs.cornell.edu

g ‘! 2 @
@
2]) -
v [
(o
] E North
& ()}

@ ogm‘a V\‘cstﬁ; East

Put the Toyota block in the same row as the SRI block, in the
first open space to the right of the SRI block

Toyota to the immediate right of SRI, evenly aligned and slightly
separated

Figure 1: Instructions in Blocks. The above instructions
describe the same task. Given the observed RGB image
of the start state (large image), our goal is to execute such
instructions. In this task, the direct path to the target po-
sition is blocked. The agent must move the Toyota block
around. The small image shows the target and an example
path, which includes 34 steps.

statistics over execution states. Once learned, the reward
function is computed using agent observations and does not
require access to the world state. In this abstract, we de-
scribe our ongoing work towards this goal. We evaluate in
the simulated Blocks environment (Bisk, Marcu, and Wong
2016), and empirically demonstrate the effectiveness of the
learned reward. Our approach shows limited degradation
in performance in comparison to a reward that has access
to the world state, while outperforming supervised learning
and common reinforcement learning methods.

Problem Description

Task Let X be the set of all instructions, S the set of all
world states, and A the set of all actions. An instruction
Z € X is a sequence (x1,. .., Z,), where each x; is a token.
The agent executes instructions by generating a sequence of
actions, and indicates execution completion with the spe-
cial action STOP. Action execution modifies the world state
following a transition function 7" : & x A — S. The exe-
cution € of an instruction 7 starting from s; is an m-length
sequence ((s1,a1), ..., (Sm,am)), where s; € S, a; € A,
T(si,a;) = S;+1 and a,,, = STOP. In Blocks (Figure 1), a
state specifies all block positions. For each action, the agent
moves a block on the plane in one of four directions (north,
south, east, or west). There are 20 blocks, and 81 possible
actions at each step, including STOP. For example, the action
TOYOTA-SOUTH moves the Toyota block one step south.

> CNN

z: Place the Toyota east of SRI

TOYOTA-SOUTH ~ Previous Action ag

[se0ees] Agent Context §19

— 666666666 w669 h!

Task Specific
h* Ge=gh!

Visual State vig

Instruction Representation X

[eoieee o] ul-: SoftMax Layers

TOYOTA- SOUTH

TOYOTA-SOUTH ~ Action ayg

Figure 2: Illustration of the policy architecture showing the 10th step in the execution of Place the Toyota east of SRI starting
from the state in Figure 1. The inputs are the instruction Z, the current state image I, previous state images (Ig and Ig), and the
previous action ag. The text and images are embedded with a recurrent neural network LSTM (Hochreiter and Schmidhuber
1997) and a convolutional neural network CNN (LeCun et al. 1998). The action is selected with a multi-layer perceptron.

Data We train and evaluate on Blocks. The data set in-
cludes 16, 767 natural language instructions with a vocab-
ulary of 1,426. The mean instruction length is 15.27, and
the mean number of actions 15.4. When compared to com-
mon data sets (MacMahon, Stankiewics, and Kuipers 2006;
Matuszek et al. 2012; Misra et al. 2015), the instructions are
longer, have a larger vocabulary, and require a larger number
of actions (Misra, Langford, and Artzi 2017, Table 1).

Single-Model Approach

Model The agent observes the world state using a camera
sensor. Given a world state s, the agent observes an RGB im-
age I € 7 generated by the function IMG(s). We distinguish
between the world state s and the agent context s, which
includes the instruction, the image observation IMG(s), im-
ages of previous states and the previous action. To map in-
structions to actions, the agent reasons about the agent con-
text to generate a sequence of actions. At each step, the
agent generates a single action. We model the agent with
a neural network policy. At each step j, the network takes
as input the current agent context s5;, and predicts the next
action to execute a;. Figure 2 illustrates the policy network.
For full details see Misra, Langford, and Artzi (2017).

Learning We estimate the policy parameters using rein-
forcement learning in a contextual bandit setting. In a con-
textual bandit setting, maximizing the immediate reward
suffices and provides stronger theoretical guarantees than
unconstrained reinforcement learning (Agarwal et al. 2014).

Reward with an Instrumented Environment

In Misra, Langford, and Artzi (2017), we define a sim-
ple task-completion reward computed from the world state.
To leverage demonstrations of the desired system behav-
ior, we use reward shaping (Ng, Harada, and Russell 1999;
Wiewiora, Cottrell, and Elkan 2003). Computing this reward
requires instrumenting the training environment, a challeng-
ing engineering task in complex domains.

Reward Learning with Metric Learning

We adopt an inverse reinforcement learning (Ng and Rus-
sell 2000, IRL) approach and learn a reward function that is
computed from the agent context. The original reward func-
tion is based on comparing world state and computing dis-
tances between them. Therefore, we cast the reward learning
problem as learning a distant metric between world states, as
observed in the agent context. Formally, our goal is to learn
a distance function dy : Z x Z — R with parameters 6.
We define dg(I1, 1) = ||po(I1) — ¢o(I2)]|2, where ¢ is a

[Algorithm | Distance Error |
Demonstrations 0.35
RANDOM 15.3
SUPERVISED 4.65
REINFORCE (Sutton et al. 1999) 5.57
DQN (Mnih et al. 2013) 6.04
Our approach

w/instrumented environment 3.60
w/learned reward 4.07

Table 1: Mean error development results.

convolutional neural network with parameters 6. To learn
the distance function, we assume access to a dataset of im-

age triplets {(I%"), [5_")’ T}V where the state of Ii")

is closer to state of I,(ln) than the state of I S"). We minimize
the triplet]?VSS (Weinberger, Blitzer, and Saul 2006):

1 (n) 7(n) (n) 7(n)
L:NZmaX{O,dQ(Ia A7) —do (1, 10) + 13 .

To gene?atle triplets we assume access to executions with

progress meta data. The progress data includes for each
execution step if it is closer to the final state than the pre-
vious step or further. A state may be further from the fi-
nal state than the previous if the agent was moving fur-
ther to, for example, go around an obstacle. We generate
triplets for each pair of adjacent states and the final exe-
cution state. The image of the final state is /., and the
images of the next state and the current state are used as
I, and I_, or vice versa, based on the progress meta data.
The reward function is then defined as a potential difference
R(I,a,I') = do(I4,I) — dg(Iy,1") where I,I" and I, are
the images of the current, next, and goal states.
Results Table 1 shows current development results. We
measure execution error as the distance between the final
and goal states, normalized by the block size. We report the
mean error of following the demonstrations, random behav-
ior (RANDOM), supervised learning (SUPERVISED), two re-
inforcement learning baselines (REINFORCE and DQN),
our contextual bandit approach with instrumented training
environment, and our approach with a learned reward.

Conclusion

We use metric learning to induce a reward function for
learning to map instructions to actions. The reward func-
tion does not require the world state, and enables reinforce-
ment learning without instrumenting the training environ-
ment. Our contextual bandit learning approach is designed
for a few-samples regime. When the number of samples is
unbounded, the drawbacks observed in this scenario for op-
timizing longer term reward do not hold.

References

Agarwal, A.; Hsu, D. J.; Kale, S.; Langford, J.; Li, L.; and
Schapire, R. E. 2014. Taming the monster: A fast and sim-
ple algorithm for contextual bandits. In Proceedings of the
International Conference on Machine Learning.

Artzi, Y., and Zettlemoyer, L. 2013. Weakly supervised
learning of semantic parsers for mapping instructions to ac-
tions. Transactions of the Association of Computational Lin-
guistics 1:49-62.

Artzi, Y.; Das, D.; and Petrov, S. 2014. Learning com-
pact lexicons for CCG semantic parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing.

Bisk, Y.; Marcu, D.; and Wong, W. 2016. Towards a dataset
for human computer communication via grounded language
acquisition. In Proceedings of the AAAI Workshop on Sym-
biotic Cognitive Systems.

Bisk, Y.; Yuret, D.; and Marcu, D. 2016. Natural lan-
guage communication with robots. In Proceedings of the
2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies.

Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the National Conference on Artificial In-
telligence.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9.

Langford, J., and Zhang, T. 2007. The epoch-greedy
algorithm for multi-armed bandits with side information.
In Advances in Neural Information Processing Systems
20, Proceedings of the Twenty-First Annual Conference on

Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278-2324.

Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17.

MacMahon, M.; Stankiewics, B.; and Kuipers, B. 2006.
Walk the talk: Connecting language, knowledge, action in
route instructions. In Proceedings of the National Confer-
ence on Artificial Intelligence.

Matuszek, C.; Herbst, E.; Zettlemoyer, L. S.; and Fox, D.
2012. Learning to parse natural language commands to a
robot control system. In Proceedings of the International
Symposium on Experimental Robotics.

Matuszek, C.; Fox, D.; and Koscher, K. 2010. Following di-
rections using statistical machine translation. In Proceedings
of the international conference on Human-robot interaction.

Mei, H.; Bansal, M.; and Walter, R. M. 2016. What to
talk about and how? selective generation using Istms with
coarse-to-fine alignment. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technolo-
gies.

Misra, K. D.; Tao, K.; Liang, P.; and Saxena, A. 2015.
Environment-driven lexicon induction for high-level instruc-
tions. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Misra, D.; Langford, J.; and Artzi, Y. 2017. Mapping in-
structions and visual observations to actions with reinforce-
ment learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing atari with deep reinforcement learning. In Advances
in Neural Information Processing Systems.

Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the International
Conference on Machine Learning.

Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Proceedings of the International Con-
ference on Machine Learning.

Popov, I.; Heess, N.; Lillicrap, T.; Hafner, R.; Barth-
Maron, G.; Vecerik, M.; Lampe, T.; Tassa, Y.; Erez, T.;
and Riedmiller, M. 2017. Data-efficient deep reinforce-
ment learning for dexterous manipulation. arXiv preprint
arXiv:1704.03073.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 1999. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural Infor-
mation Processing Systems.

Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee,
A.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In Proceedings of the National Conference on
Artificial Intelligence.

Weinberger, K. Q.; Blitzer, J.; and Saul, L. K. 2006. Dis-
tance metric learning for large margin nearest neighbor clas-
sification. In Advances in neural information processing sys-
tems, 1473-1480.

Wiewiora, E.; Cottrell, G. W.; and Elkan, C. 2003. Prin-
cipled methods for advising reinforcement learning agents.
In Proceedings of the International Conference on Machine
Learning.

