Supplementary Material:
Broad-coverage CCG Semantic Parsing with AMR

Yoav Artzi*

Kenton Lee Luke Zettlemoyer

Dept. of Computer Science and Cornell Tech Computer Science & Engineering

Cornell University
New York, NY 10011
yoav@cs.cornell.edu

1 Features

For feature computation, we append to each bi-
nary predicate originating from a single-token
lexical entry the token that triggered it. For
example, given the lexical entry dance +
Az.\d.dance-01(d) AARGO(d,), when comput-
ing features, we will consider its logical form to
be Az.\d.dance-01(d) AARGO+dance(d, x). For
simplicity, where possible, we abstract this step in
this section. We also simplify feature names.

1.1 CCG Parsing Features

Lexical Features We create multiple features
for each lexical entry:

e Indicator features for every lexeme, lexical
template and every pairing of lexeme and
template. For example, consider the lex-
ical entry dance F Az.Ad.dance-01(d) A
ARGO(d,z) generated from the lexeme
(dance,{dance-01}) and the template
A1 [S\NP : Ax.Aa.vi(a) AN ARGO(a, z)].
Using this entry in a derivation will trigger
three features: one for the lexeme, one for
the template and one for pairing the two.

e Features to indicate using a lexical entry gen-
erated from the date and number regular ex-
pression heuristics. For example, the en-
try 2001 = NP : A;(\d.date-entity(d) A
year(d,2001)) may be created from the date
regular expression and will trigger the feature
DATEREGEXP.

e For each usage of a lexical entry with a single
token, we trigger a feature that pairs the part-
of-speech tag of the token with its syntactic
attribute. For example, if the word weapons
was assigned the tag NNS and the lexical en-

try weapons = Npj @ Aw.weapon(w), we

will create a feature NNS+pl.

*Work done at the University of Washington.

{kentonl,

University of Washington
Seattle, WA 98195
lsz}@cs.washington.edu

Logical Form Features We trigger an indicator
feature if the logical expression at the root of a
complete parse tree includes repeating elements in
a conjunction. We ignore Skolem IDs when com-
puting this feature. For example, the logical form

Aj (A\i.involve-01(2)A
ARGO(i, A2 (Ab.boy (b)) A
ARGO(4, A3(Ab.boy (b))

will trigger this feature.

Parsing Operations We create a feature with

the rule name for every use of a unary shifting rule

and a feature that pairs the rule name with the in-

stance typing predicate of the top instance in the

logical form. For example, the unary parse step
NPg)

A1 (Ac.city(c) A name(c, Az (An.name(n)A
op(n, PYONGYANG))))

Niz)/Nia
Az f(x) A REL(x[./]4/1()[@ city(c) A name(c,
Az(An.name(n) A op(n, PYONGYANG)))))

uses the rule ADJNP to shift a NP to an adjec-
tive and will trigger two features: ADJNP and
ADIJNP+city. We also create features for using
forward or backward crossing composition.

Attachment Features When a parsing opera-
tion creates a new fully specified AMR relation,
we create features using the instance type of both
concepts and the relation name. For example, the
forward application parsing step
S\NP/NP NPy
Az Ay.Ad.deny-01(d)A Az (Ai.involve-01(:)A
ARGO(d, y)A ARG1(i, R(ID)))
ARG1(d, z)

>

S\NP
Ay.Ad.deny-01(d) A ARGO(d, y) A ARG1(d,
Az (Xi.involve-01(3) A ARGl(Z,R(I))))

will create the features:
e deny-01+ARG1+involve-01
e deny-01+ARG1
e ARG1+involve-01

1.2 Constant Mapping Features

Unary Features For every constant assignment
we create a simple bias feature that includes
the assigned constant and a feature that pairs
the assigned constant with the original constant
in the underspecified logical form (including the
appended origin token, if exists). For exam-
ple, consider the phrase king of thieves that
may be represented by the underspecified logi-
cal form (with appended tokens) A; (Ak.king(k) A
REL+of (¢, A2(At.thief(¢)))) and the fully speci-
fied A; (Ak.king(k) A mod(c, Ax(At.thief(t)))).
This mapping will create the features mod and
mod+REL+of .

Selectional Preferences For every relation in
the logical form, we create features that include
the typing predicate of each instance and the re-
lation predicate. For example, for the mapping
above, we will create the following three feature:

e king+mod+thief

e king+mod

e mod+thief
If one of the instances is a reference to a
Skolem ID (e.g., R(2) in A;(Az.love-01(z) A
ARGO(z, A2(Ay.boy(y))) N ARGL(z,R(2))))
we use the type of the referenced instance (boy,
in the example).

Control Preferences We create features that ac-
count for references via control structures. For ex-
ample, consider the sentence I want to buy a ticket
that may be represented by the underspecified log-
ical form
Aq (Aw.want-01(w)A
ARGO(w, A2(Xi.I(7)))A
ARGI1(w, Az(Ab.buy-01(b)A
ARGO(b, R(ID))A
ARG1(b, Ag(At.ticket())))))

and mapped to the fully specified

Aj (Aw.want-01(w)A
ARGO(w, Aa(Ni.I(7)))A
ARG1(w, A3(Ab.buy-01(b)A
ARGO(b, R(2))A
ARG1(b, Ag(At.ticket(t)))))) .
This mapping will create the feature
want-01+ARGO+ARG1+ARGO for resolv-

ing ID to 2. The above fully specified form
highlights the constants used in the feature.

2 AMR to Lambda Calculus Conversion

We define a deterministic and invertible conver-
sion process between AMR and lambda-calculus
representations. Table 1 describes one direc-
tion (AMR to lambda calculus) of the recursive
CONVERT process. In practice, we implemented
both directions, and are able to accurately convert
between the representations. We define instance
type following the AMR specification,! for exam-
ple location, person, name, etc. CONVERT dis-
tinguishes between name instance types and all
other instance types. For name, we concatenate
the name tokens. For all other relations, we sim-
ply create conjunctions between binary literals and
recursively convert the related instance. For a vari-
able re-used for reference, we replace it with a
reference to the appropriate Skolem ID. Every in-
stance is assigned a unique Skolem ID. We cre-
ate i-typed constants for numbers, txt-typed con-
stants for concatenated names and e-typed con-
stants for all other symbols.

Our simple and deterministic conversion pro-
cess makes no distinction between references
that are the result of syntactic control and non-
compositional references (e.g., pronouns). For ex-
ample, the structures for Pyongyang officials de-
nied their involvement and Pyongyang officials de-
nied involvement will be identical, although their
syntactic derivation is different. As a result, our
model, inference procedure and learned grammar
do not make this linguistic distinction. While a
more linguistically motivated approach to control
structures is likely to increase the accuracy of re-
solving such dependencies, it will require treating
the distinction between such cases and other refer-
ences as latent variables, further complicating the
learning process. We, therefore, consider this a
promising direction for future work.

3 Example Derivations

Figures 1 and 2 show example output derivations
from out system for two sentences from the devel-
opment set. Each figure includes the max-scoring
derivation, the AMR output of our learned model
and the annotated AMR. We abstract over the de-
tails of the constant mapping step and represent it
as the last step of the CCG parse tree.

"https://github.com/amrisi/
amr—-guidelines/blob/master/amr.md

[AMR A | Lambda calculus: CONVERT(A) | Update IDMAP]
Name instances
(n/name A (An.name(n) A IDMAP[n] = k
:opl TOKEN1 op(t, TOKEN1_TOKEN2_
:op2 TOKEN2 .._TOKENm) A
. relationl(¢, CONVERT(A1)) A
:opm TOKENm relation2(t, CONVERT(A2)) A
rrelationl Al A
relation2 A2 relationl(¢, CONVERT(]))
‘relation]l Al)
All other instances
(t/instance_type A (At.instance_type(t) A IDMAP[t] = k
rrelationl Al relationl(¢, CONVERT(A1)) A
‘relation2 A2 relation2(t, CONVERT(A2)) A
. EERIVAN
‘relation]l Al) relationl(¢, CONVERT(AI))

Re-using a variable for reference

v [R(IDMAP[v]) [
Other AMR symbols
symbol [symbol [

Table 1: AMR to lambda calculus conversion cases. For clarity, we omit the typing information. IDM AP maintains
a mapping of variables to Skolem IDs.

4 Comparisons to JAMR

We provide comparisons between our system out-
puts and JAMR outputs for sentences from the de-
velopment set. Figures 3 through 9 show for each
example the annotated AMR, the output of our ap-
proach and the JAMR output.

As expected, JAMR’s weaker model of syntax
results in erroneous distant attachments that vi-
olate the syntactic structure of the sentence. In
contrast, while our approach also suffers from at-
tachment errors, in general, they are more similar
to these seen in syntactic parsers and are derived
from plausible syntactic decisions. As observed in
the overall results, we also see in the examples be-
low that JAMR displays significantly lower recall.
While JAMR is limited to surface-form heuristics
only, our approach adopts, in addition, a more lib-
eral approach to generate lexical entries and is able
to entertain more high quality hypotheses due to
the usage of syntactic constraints. This allows
our approach to recover more complete senten-
tial representations. Finally, we observe that our
approach generates more human readable deriva-
tions. We are able to easily identify the origin of
attachment decisions by observing the lexical en-
tries assigned to words.

Cyber space essentially has no borders

Nsg] N{pl] S\NP/NP N{z]/N|[z] Nlpl] P
Az.cyber(z) Az.space(x) Az Ay Az.have-03(z)A Af.dz.f(z)A Az.border(z)
ARGO(z, y) A ARG1(z,z) REL(zx, —)
>
Nz]/N|[z] Npl]
Af.xz. f(z) A REL(z, A(Ay.cyber(y))) . Az.border(z) N REL(xz, —)
Nipl] N Plpl]
Az.space(z) A REL(z, A(Ay.cyber(y))) A(Xz.border(z) N REL(z, —))
N PIpl] N P[pl] b
A(Xz.space(z) A REL(z, A(Ay.cyber(y)))) A(Xz.border(z) AN REL(z, —))
>
NP
A(Az.space(z) A REL[(Z,'], A(Xy.cyber(y)))) Ay. Az have- 03(\1) A ARGO(z, y)A

ARG1(xz, A(Xz.border(z) AN REL(z, —)))

Az.have-03(z) A ARGO(z, A(Ay.space(y) A REL(y, _A(fzx:yber(z))))) AN ARG1(A(Xz.border(z) A REL(z, —)))

A
A(Az.have-03(z) A ARGO(z, A(Ay.space(y) A REL(y, .A()\z cyber(z))))) A ARG1(A(Xz.border(z) A REL(Z =))))
CTORGRAPH

A1 (Az.have-03(z) A ARGO(z, Az (Ay.space(y) A mod(y, .A;(/\z cyber(z))))) A ARG1(A4(Az.border(z) A polarity(z, —))))

(a) Derivation of the final logical form.

(h/have-03 (h/have-03
:ARGO (s/space :ARGO (s/space
:mod (c/cyber)) :mod (¢/cyber))
:ARG1 (b/border :ARG1 (b/border)
:polarity —) :polarity —
:manner (e/essential))
(b) Predicted AMR. (c) Annotated AMR.

Figure 1: The max-scoring derivation for the sentence Cyber space essentially has no borders. The system failed
to recover the manner relation of have-03, and it incorrectly attached the negation to border rather than to have-03.
The SMATCH F1 for this example is 0.80.

Akkermans was working with Storimans and suffered minor injuries
N P[sg] S\NP/(S\NP) S\NP S\S/NP N P[sg] C S/NP Nz]/N[z] Npl]
A(Xz.person(z)A AT AY. Az, Az Ay. Az Ay Az, A()\z thmg(z)/\ conj Az.Ay.suffer-01(y)A Az Ay.z(y)A Az.
REL(z, A(Ay.nameA z(y(z)) work-01(y)A y(z)A REL(z, A(Ay.name(y)A ARGO(y, R(ID))A REL(y, injure-01(x)
op(AKKERMANS)))) ARGO(y,z) ARGI1(z,x) op(STORIMANS)))) ARG1(y, x) A(Az.minor(z)))
> >

>
ESS

FACTORGRAPH

A
Aj(Az.and(z) A opl(:c Ao (Ay.work-01(y) A ARGO(A3z(Az.person(z) A name(z, Ag(Aw.name(w) A op(w, AKKERMANS)))))A
1(ARG1(y, A5 (Az.thing(z) A name(z, Ag(Aw.name(w) A op(w, STORIMANS)))))A
op2(z, .A7()\y suﬁer 01 A ARGO(y, R(3)) A ARG1(y, Ag(Aw.injure-01(w) A polarlty(w Ag (Av.minor(v))))))))))
(a) Derivation of the final logical form. The intermediate categories and punctuation are omitted for brevity. To
simplify the output, we mark conjunction with a single step. In practice it involves multiple binary steps.

(a/and (a/and
:opl (w/work :opl (w/work
:ARGO (p/person :ARGO (p/person
:name (n/name :opl “Akkermans”) :name (n/name :opl “Akkermans”)
:ARG1 (t/thing :ARG3 (p2/person
:name (n2/name :opl “Storimans”) :name (n2/name :opl “Storimans”)
:op2 (i/suffer-01 :op2 (i/injure-01
:ARGO p :ARG1 p
:ARG1 (i/injury-01 :degree (m/minor)))
:polarity (m/minor)))
(b) Predicted AMR. (c) Annotated AMR.

Figure 2: The max-scoring derivation for the sentence Akkermans was working with Storimans and suffered minor
injuries. The system correctly analyzed the coordination, but it incorrectly introduced a suffer-01 predicate and
inferred that Storimans fills the role of a job rather than a coworker. The SMATCH F1 for this example is 0.70.

’ The test caused protests from the United States and other nations.

Gold AMR

JAMR (SMATCH F1 : 0.72)

Our System (SMATCH F1 : 0.78)

(¢/cause-01
:ARGO (t/test)
:ARG1 (p/protest-01
:ARGO (a/and
:opl (¢2/country
:name (n/name
:opl “United”
:0p2 “States”))
:0p2 (n2/nation
:mod (o/other)))))

(¢/cause-01
:ARGO (t/test-01
:ARG1 (o/other))
:ARGI1 (p/protest-01
:ARGO (a/and
:opl (c2/country
:name (n/name
:opl “States”
:op2 “United”))
:0p2 (n2/nation))))

(¢/cause-01
:ARGO (t/test-01)
:ARG1 (a/and
:opl (p/protest-01
:ARGO (¢2/country
:name (n/name
:opl “United”
:op2 “States”))
:0p2 (n2/nation
:mod (o/other)))))

Figure 3: An example where JAMR recovered a more accurate global interpretation of the sentence, while our
system scoped the coordination incorrectly (inferring that caused is an event with the test and other nations as

arguments). However, our system shows stronger local coherence given the interpretation.

’ China has built and launched a communications satellite for Nigeria.

Gold AMR

JAMR (SMmATCH F1 : 0.61)

Our System (SMATCH F1 : 0.88)

(a/and
:opl (b/build-01

:ARGO (¢/country

:name (n/name
:opl “China”))

:ARG1 (s/satellite
:purpose (¢2/communicate-01)
:beneficiary (¢3/country

:name (n2/name
:opl “Nigeria”))))
:op2 (I/launch-01
:ARGO ¢
:ARG1 s))

(a/and
:opl (h/have-03
:ARGO (¢/country
:name (n/name
:opl “Nigeria”)))
:0p2 (b/build-01
:ARG1 (s/satellite
:ARGO-of (¢2/communicate-01)
:ARG1-of (I/launch-01))))

(a/and
:opl (b/build-01
:ARG1 (¢/country
:name (n/name
:opl “China”)))
:op2 (I/launch-01
:ARGI1 (s/satellite
:poss (¢2/communicate-01)
:beneficiary (c3/country
:name (n2/name
:opl “Nigeria”)))
:ARGO ¢))

Figure 4: An example with a cyclic AMR. The country and the satellite are both co-referred by the build-01 and

launch-01 events. Our system fails to recover the correct arguments for the build-01 event.

’ A key European arms control treaty must be maintained.

Gold AMR

JAMR (SMATCH F1 : 0.48)

Our System (SMATCH F1 : 0.94)

(o/obligate-01
:ARG2 (m/maintain-01
:ARGI1 (t/treaty
:ARGO-of (¢/control-01
:ARGI1 (a/arm))
:mod (k/key)
:mod (c2/continent
:name (n/name
:opl “Europe”)))))

(m/maintain-01
:ARG1 (t/treaty
:mod (k/key)
‘topic (¢/control-01)))

(o/obligate-01
:ARG2 (m/maintain-01
:ARGI1 (t/treaty
‘topic (¢/control
:ARGI1 (a/arm))
:mod (k/key)
:mod (c2/continent
:name (n/name
:opl “Europe”)))))

Figure 5: An example where many of the core arguments of the events are not explicitly stated in the sentence.

Our system is able to recover the overall structure, but interprets arms control as a topic rather than an event.

’ The principal cause is the use of drugs.

Gold AMR

JAMR (SMATCH F1 : 0.62)

Our System (SMATCH F1 : 0.43)

(c¢/cause-01
:ARGO (u/use-01
:ARGI1 (d/drug))
:mod (p/principal))

(¢/cause-01
:ARGO-of (u/use-01
:ARGI1 (d/drug
:ARG2-of (i/include-91))))

(u/use-01
:ARGI1 (d/drug)
:ARGI1 (c¢/cause))

Figure 6: An example where the focus is on the subject rather than the event due to the copular. Due to the
irregular compositional structure often assigned for such sentences in the AMR Bank, our system often fails to
learn to recover the correct interpretation in such cases.

’ The body later was stolen from its crypt.

Gold AMR

JAMR (SMATCH F1 : 0.70)

Our System (SMATCH F1 : 0.67)

(s/steal-01
:ARG1 (b/body)
:ARG2 (c¢/crypt
:poss b)
:time (I/late
:degree (m/more)))

(s/steal-01
:ARG1 (b/body)
:time (I/late))

(s/steal-01
:ARG1 (t/thing
:time (I/late
:degree (m/more))
:mod (b/body)
:ARG21t)

Figure 7: An example with a rare word, crypt, that cannot be handled by the named-entity recognizer. Our system
performs word skipping in this example, causing it to recover a non-sensical AMR.

’ Tuxtepec is in the southeast side of Oaxaca.

Gold AMR

JAMR (SMATCH F1 : 0.27)

Our System (SMATCH F1 : 0.81)

(b/be-located-at-91
:ARG1 (c/city-district
:name (n/name
:opl “Tuxtepec”))
:ARG2 (s/side
:mod (s2/southeast)
:part-of (s3/state
:name (n2/name
:opl “Oaxaca’)))))

(s/side
:mod (s2/southeast)
:ARG1-of (i/include-91))

(b/be-located-at-91
:ARG1 (c¢/country
:name (n/name
:opl “Tuxtepec”))
:ARG2 (s/side
:mod (s2/southeast)
:mod (¢2/country
:name (n2/name
:opl “Oaxaca’))))

Figure 8: An example where world knowledge is needed to completely recover the AMR. Our system maintains a
simple mapping from the named-entity recognizer types to AMR types and, by default, guesses that Tuxtepec and

Oaxaca are countries, whereas they are respectively a city district and a state.

Iranian state television stated that Iranian police have killed 4 drug smugglers and have confis-
cated more than 1 ton of opium near the town of Mirjaveh.

Gold AMR

JAMR (SMATCH F1 : 0.61)

Our System (SMATCH F1 : 0.76)

(s/state-01
:ARGO (t/television
:mod (s2/state)
:mod (¢/country
:name (n/name
:opl “Iran”)))
:ARGI1 (a/and
:opl (k/kill-01
:ARGO (p/police
:mod c)
:ARG1 (p2/person
:ARGO-of (s3/smuggle-01
:quant 4
:ARG1 (d/drug)))
:op2 (c3/confiscate-01
:ARGO p
:ARG1 (o/opium
:quant (m/more-than
:quant (m2/mass-quantity
:quant 1
:unit (¢2/ton)))))
:location (n2/near
:location (t3/town
:name (n3/name
:opl “Mirjaveh”))))

(s/state-01
:ARGO (p/person
:ARGO-of (h/have-org-role-91
:ARG1 (c¢/country
:name (n/name
:opl “Iran”))))
:ARGI1 (a/and
ropl (k/kill-01
:ARGO (p2/police
:mod (¢2/country
‘name (n2/name
:opl “Iran”))))
:ARG1 (p3/person
:ARGO-of (s2/smuggle-01
:ARGI1 (d/drug)))
:op2 (p4/person
:ARGO-of (h2/have-org-role-91))
:op3 (c3/confiscate-01
:ARGO (t/television
:mod (s3/state))
:ARG1 (i/include-91
:ARG1 (o/opium
:quant (m/mass-quantity
‘unit (¢2/ton)))
:ARG3 (m2/more))
:ARG2 (t3/town)
:location (n3/near
:ARG1—of (i2/include-91)))))

(s/state-01
:ARGO (t/television
:mod (s2/state)
:mod (¢/country
:name (n/name
:opl “Iran”)))
:ARG1 (a/and
:opl (k/kill-01
:ARGO (p/police)
:ARG1 (p2/person
:quant 4
:ARGO-of (s3/smuggle-01
:ARG1 (d/drug))))
:op2 (c2/confiscate-01
:ARG1 (p3/police)
:quant (m/more-than
:opl (o/opium
:quant (m2/mass-quantity
:quant 1
:unit (¢2/ton))))))
:location (n2/near
:opl (t3/town
:poss (p4/person))))

Figure 9: A longer example that is more typical of newswire text and demonstrates a variety of NLP problems,
including word-sense disambiguation, co-reference resolution, named-entity recognition, coordination, quantifier
scoping and prepositional phrase attachments. While our approach demonstrates progress, recovering a coherent
complete structure for such longer and more complex sentences remains a challenge.

