
A Global Voting for Lexicon Learning

In this appendix we provide the step-by-step
pseudo-code for the voting strategies described
in §4. We first define in §A.1 the function
AGGREGATEVOTES to aggregate votes over lex-
emes (for review of lexemes and factored lexicons,
see §2.1). We then describe MAXVOTE in §A.2
and CONSENSUSVOTE in §A.3. Figure 6 provides
pseudocode for both strategies. While voting is
defined over lexemes, as described in §4, the out-
put of each voting strategy algorithm is a set of
lexical entries to add to the lexicon, as expected
for the procedure VOTE in line 5 of Algorithm 1.

A.1 Vote Aggregation for Lexemes

Given sets of lexemes, votes are aggregated inde-
pendently for each of the strings included in the
lexemes. Let L(1), . . . , L(N) be a collection of
N sets of lexemes, and let L∪ =

⋃N
i=1 L

(i) be
their union. Let S(.) be a function that returns
the string(s) for a single lexeme (set of lexemes).
Therefore, S(L∪) denotes the set of all strings
for the N lexeme sets. Given the above defini-
tions, AGGREGATEVOTES(L(1), . . . , L(N)) com-
putes a voting dictionary V with an entry Vs for
each string s ∈ S(L∪). Each entry Vs is a function
L∪ → R, which given a lexeme ` ∈ L∪ returns:

Vs(`) =
N∑
i=1

1{` ∈ L(i)}∑
`′∈L∪ 1{`

′ ∈ L(i) ∧ S(`′) = s}

Where 1{.} is an indicator function. Vs(`) is the
vote assigned to the lexeme ` for the string s. Each
L(i) may contribute a total vote of 1.0 for each
string, which is distributed uniformly among all
lexemes containing this string in L(i). See §4 for
example votes computation.

A.2 Strategy 1: MAXVOTE

Algorithm 4 provides the pseudocode for the first
voting strategy, as described in §4.1. We define
the function L(.) to return the lexeme(s) for a lex-
ical entry (set of lexical entries). We first create
the set of all new lexemes Lnew (line 1), which in-
cludes all generated lexemes that don’t appear in
the model lexicon. Next, the voting dictionary V
is computed for the N lexeme sets using AGGRE-
GATEVOTES (line 2). In lines 4-5, for each string
s ∈ S(Lnew ), we find the new lexeme with most

Algorithm 4 MAXVOTE: Voting strategy to select the high-
est voted lexical entries. See §A.2 for details.
Input: Global lexicon Λ and datapoint-specific sets of lexi-

cal entries {λ(1), . . . , λ(N)}.
Output: Voted set of lexicon entries Λmax .

» Get the set of new lexemes from theN generated sets.

1: λ∪ ←
N⋃
i=1

λ(i), Lnew ← L(λ∪)\L(Λ)

» Compute voting dictionary (§A.1).
2: V ← AGGREGATEVOTES(L(λ(1)), . . . ,L(λ(N)))

» For each string s ∈ S(Lnew ), add to Lmax the new
lexeme with the most votes.

3: Lmax ← ∅
4: for each string s ∈ S(Lnew ) do
5: Lmax ← Lmax ∪ {arg max

`∈Lnew

Vs(`)}

» Select all the lexical entries with max voted lexemes.
6: Λmax ← {e : e ∈ λ∪ and L(e) ∈ Lmax}
7: return Λmax

Algorithm 5 CONSENSUSVOTE: Voting strategy to select
lexical entries preferred by most datapoints through multiple
rounds of voting. See §A.2 for details.
Input: Global lexicon Λ and datapoint-specific sets of lexi-

cal entries {λ(1), . . . , λ(N)}.
Output: Voted set of lexicon entries Λcon .

1: L(i) ← L(λ(i)), L− ← ∅
2: repeat

» For each i, get the set of lexemes that have not been
discarded.

3: for i = 1 to N , ∀s ∈ S(L(i)) do
4: L← {` : ` ∈ L(i) and either S(`) 6= s or ` 6∈ L−)}

» Replace original set, only if s is still covered.
5: if s ∈ S(L) then
6: L(i) ← L

» Compute voting dictionary (§A.1).
7: V ← AGGREGATEVOTES(L(1), . . . , L(N))

8: L∪ ←
N⋃
i=1

L(i)

» Update the set of discarded lexemes L− with mini-
mally voted lexemes for each string.

9: for each string s ∈ S(L∪) do
10: L− ← L−∪

{` : ` ∈ L∪ and Vs(`) = min
`′∈L∪

Vs(`′)}
11: until L− does not change

» Update lexicon entry sets per datapoint.
12: for i = 1 to N do
13: λ(i) ← {e : e ∈ λ(i) and L(e) ∈ L(i)}
14: Λcon ← MAXVOTE(Λ, {λ(1), . . . , λ(N)})
15: return Λcon

Figure 6: Voting strategires pseudo-code.

votes. In case of a tie, no lexeme is selected. Fi-
nally, in lines 6-7, the lexical entries correspond-
ing to the selected lexemes are returned.

A.3 Strategy 2: CONSENSUSVOTE

Algorithm 5 provides the pseudocode for the sec-
ond voting strategy, as described in §4.2. CON-
SENSUSVOTE iteratively discards lexemes and re-



distributes their votes between the remaining ones
(lines 2-11). This process continues until conver-
gence, i.e., no more lexemes are discarded. To dis-
card lexemes, first we iterate over all datapoint-
specific lexeme sets L(i) and the strings s they
contain (lines 3-6). For each s and L(i), we cre-
ate the set L that contains all lexemes in L(i) that
are not in the discard set L−. If L still contains
lexemes with the string s, we replace L(i) with it
(lines 5-6). This condition is intended to ensure
that discarding lexemes will not change the set of
sentences that can be parsed. After this update,
each L(i) covers the same set of string, but pos-
sibly contains fewer lexemes. Next, we update
the set of discarded lexemes L−. First, we use
AGGREGATEVOTE to compute the updated voting
dictionary (line 7) and collect all lexemes into a
single set (line 8). To update L− we iterate over all
strings (lines 9-10), and for each string s add the
lexemes with the lowest number of votes to L−.
This process (lines 2-11) repeats until no more en-
tries are discarded. In lines 12-13, the datapoint-
specific lexical entry sets are reassigned based on
the remaining lexemes in each L(i), and finally, we
call MAXVOTE to get the max-voted lexical en-
tries containing the undiscarded lexemes.


